Engineering Recommendation G99/NI

Issue 1 April 2019

Requirements for the connection of generation equipment in parallel with public distribution networks in Northern Ireland on or after 27 April 2019
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>9</td>
</tr>
<tr>
<td>1 Purpose</td>
<td>10</td>
</tr>
<tr>
<td>2 Scope and Structure</td>
<td>10</td>
</tr>
<tr>
<td>3 Normative references</td>
<td>13</td>
</tr>
<tr>
<td>4 Terms and definitions</td>
<td>17</td>
</tr>
<tr>
<td>5 Legal Aspects</td>
<td>34</td>
</tr>
<tr>
<td>6 Connection Application</td>
<td>36</td>
</tr>
<tr>
<td>6.1 General</td>
<td>36</td>
</tr>
<tr>
<td>6.2 Application for Connection</td>
<td>44</td>
</tr>
<tr>
<td>6.3 System Analysis for Connection Design Type A, Type B, Type C and Type D</td>
<td>46</td>
</tr>
<tr>
<td>6.4 Provision of Information</td>
<td>49</td>
</tr>
<tr>
<td>7 Connection Arrangements</td>
<td>52</td>
</tr>
<tr>
<td>7.1 Operating Modes</td>
<td>52</td>
</tr>
<tr>
<td>7.2 Long-Term Parallel Operation</td>
<td>52</td>
</tr>
<tr>
<td>7.3 Infrequent Short-Term Parallel Operation</td>
<td>52</td>
</tr>
<tr>
<td>7.4 Switched Alternative-Only Operation</td>
<td>54</td>
</tr>
<tr>
<td>7.5 Phase Balance of Type A Power Generating Module output at LV</td>
<td>56</td>
</tr>
<tr>
<td>7.6 Type A Power Generating Module capacity for single LV phase supplies</td>
<td>56</td>
</tr>
<tr>
<td>7.7 Voltage Management Units in Generator’s Installation</td>
<td>57</td>
</tr>
<tr>
<td>8 Earthing</td>
<td>58</td>
</tr>
<tr>
<td>8.1 General</td>
<td>58</td>
</tr>
<tr>
<td>8.2 Power Generating Modules with a Connection Point at HV</td>
<td>58</td>
</tr>
<tr>
<td>8.3 Power Generating Modules with a Connection Point at LV</td>
<td>63</td>
</tr>
<tr>
<td>9 Network Connection Design and Operation</td>
<td>69</td>
</tr>
<tr>
<td>9.1 General Criteria</td>
<td>69</td>
</tr>
<tr>
<td>9.2 Network Connection Design for Power Generating Modules</td>
<td>69</td>
</tr>
<tr>
<td>9.3 Step Voltage Change and Rapid Voltage Change</td>
<td>71</td>
</tr>
<tr>
<td>9.4 Power Quality</td>
<td>71</td>
</tr>
<tr>
<td>9.5 System Stability</td>
<td>73</td>
</tr>
<tr>
<td>9.6 Island Mode</td>
<td>76</td>
</tr>
<tr>
<td>9.7 Fault Contributions and Switchgear Considerations</td>
<td>77</td>
</tr>
<tr>
<td>10 Protection</td>
<td>80</td>
</tr>
<tr>
<td>10.1 General</td>
<td>80</td>
</tr>
<tr>
<td>10.2 Co-ordinating with DNO’s Distribution Network’s Existing Protection</td>
<td>81</td>
</tr>
<tr>
<td>10.3 Protection Requirements</td>
<td>83</td>
</tr>
<tr>
<td>10.4 Loss of Mains (LoM)</td>
<td>84</td>
</tr>
<tr>
<td>10.5 Additional DNO Protection</td>
<td>86</td>
</tr>
<tr>
<td>10.6 Protection Settings</td>
<td>87</td>
</tr>
<tr>
<td>10.7 Typical Protection Application Diagrams</td>
<td>92</td>
</tr>
<tr>
<td>11 Type A Power Generating Module Technical Requirements</td>
<td>100</td>
</tr>
</tbody>
</table>
11.1 Power Generating Module Performance and Control Requirements – General ... 100
11.2 Frequency response ... 101
11.3 Fault Ride Through and Phase Voltage Unbalance.. 103
11.4 Voltage Limits and Control .. 103
12 Type B Power Generating Module Technical Requirements ... 104
 12.1 Power Generating Module Performance and Control Requirements – General ... 104
 12.2 Frequency response ... 105
 12.3 Fault Ride Through and Phase Voltage Unbalance.. 107
 12.4 Voltage Limits and Control .. 111
 12.5 Reactive Capability ... 112
 12.6 Fast Fault Current Injection .. 114
 12.7 Operational monitoring ... 114
 12.8 Control Modes .. 115
 12.9 Measurement devices ... 118
13 Type C and Type D Power Generating Module Technical Requirements ... 120
 13.1 Power Generating Module Performance and Control Requirements ... 120
 13.2 Frequency response ... 121
 13.3 Fault Ride Through ... 129
 13.4 Voltage Limits and Control .. 133
 13.5 Reactive Capability ... 134
 13.6 Fast Fault Current Injection .. 137
 13.7 Black Start Capability .. 137
 13.8 Control Modes .. 137
 13.9 Operational monitoring ... 138
 13.10 Steady State Load Inaccuracies .. 139
14 Installation, Operation and Control Interface ... 140
 14.1 General .. 140
 14.2 Isolation and Safety Labelling ... 141
 14.3 Site Responsibility Schedule .. 142
 14.4 Operational and Safety Aspects ... 143
 14.5 Synchronizing and Operational Control .. 144
15 Common Compliance and Commissioning Requirements for all Power Generating Modules 145
 15.1 Demonstration of Compliance .. 145
 15.2 Wiring for Type Tested Power Generating Modules ... 145
 15.3 Commissioning Tests / Checks required at all Power Generating Facilities 145
 15.4 Additional Commissioning requirements for Non Type Tested Interface Protection 147
16 Type A Compliance Testing, Commissioning and Operational Notification ... 149
 16.1 Type Test Certification ... 149
 16.2 Connection Process .. 151
 16.3 Witnessing and Commissioning .. 152
16.4 Operational Notification

17 Type B Compliance Testing, Commissioning and Operational Notification
17.1 General
17.2 Connection Process
17.3 Temporary Export Restriction
17.4 SCADA Commissioning
17.5 Controllability Tests
17.6 Witnessing and Commissioning
17.7 Operational Notification
17.8 Post-Synchronisation Monitoring

18 Type C Compliance Testing, Commissioning and Operational Notification
18.1 General
18.3 Witnessing and Commissioning
18.4 Operational Notification

19 Type D Compliance Testing, Commissioning and Operational Notification
19.1 General
19.2 Connection Process
19.3 Interim Operational Notification
19.4 Witnessing and Commissioning
19.5 Final Operational Notification
19.6 Limited Operational Notification
19.7 Processes Relating to Derogations

20 Ongoing Obligations
20.1 Periodic Testing for Power Generating Modules
20.2 Operational Incidents affecting Compliance of any Power Generating Module
20.3 Changes to the Power Generating Facility or Power Generating Module
20.4 Notification of Decommissioning

21 Not used

22 Type Testing and Annex information
22.1 Fully Type Tested and Partially Type Tested equipment
22.2 Annex Contents and Form Guidance

Annex A – Type A

A.0 Type A Power Generating Module Forms Cover Sheet
A.1 Connection Application Form for Integrated Micro Generation and Storage (Form A1-2)
A.2 Type A Compliance Verification Report

Form A2-1: Compliance Verification Report for Synchronous Power Generating Modules up to and including 50 kW
Form A2-2: Compliance Verification Report for Synchronous Power Generating Modules > 50 kW and also for Synchronous Power Generating Modules ≤ 50 kW where the approach of this form is preferred to that in Form A2-1
Form A2-3: Compliance Verification Report for Inverter Connected Power Generating Modules...207
Site Compliance and Commissioning test requirements...218
Form A2-4: Site Compliance and Commissioning test requirements for Type A Power Generating Modules..218
A.3 Installation Document for Type A Power Generating Modules (Form A3-1) and Integrated Micro Generation and Storage (Form A3-2)226
A.4 Emerging Technologies and other Exceptions...234
A.4.1 Emerging Technologies...234
A.4.2 Electricity Storage...234
A.4.3 Infrequent Short-Term Parallel Operation...234
A.5 Example calculations to determine if unequal generation across different phases is acceptable or not..236
A.6 Not used...238
A.7 Requirements for Type Testing Power Generating Modules...239
A.7.1 Power Park Module Requirements..240
A.7.2 Synchronous Power Generating Module Requirements (up to and including 50 kW) ..247
A.7.3 Additional Power Generating Module Technology Requirements..................259
Annex B – Type B ...262
B.1 Application...262
B.2 Power Generating Module Document Type B...263
Form B2-2: Site Compliance and Commissioning test requirements for Type B Power Generating Modules...271
B.3 Installation and Commissioning Confirmation Form..280
B.4 Simulation Studies for Type B Power Generating Modules...284
B.4.1 Scope...284
B.4.2 Reactive Capability across the Voltage Range...284
B.4.3 Not used...284
B.4.4 Fault Ride Through and Fast Fault Current Injection................................284
B.4.5 Limited Frequency Sensitive Mode – Over Frequency (LFSM-O)...............285
B.5 Compliance Testing of Synchronous Power Generating Modules........................287
B.5.1 Scope...287
B.5.2 Governor and Load Controller Response Performance..................................288
B.5.3 Compliance with Output Power with falling frequency Functionality Test...293
B.6 Compliance Testing of Power Park Modules...294
B.6.1 Scope...294
B.6.2 Frequency Response Tests ...295
B.7 REMOTE TELEMETRY UNITS AND CONTROL..301
B.7.1 RTU Type Definitions..301
B.7.2 Power Supplies...302
B.7.3 RTU Facilities...302
B.8 Complex Site Signals...315
B.9 Emergency Voltage Control Example...316
B.10 Controllability Test ... 319

Annex C – Type C and Type D .. 320

C.1 Application ... 320

C.2 Power Generating Module Document Type C and Type D 320

Additional Compliance and Commissioning test requirements for Power Generating Modules .. 329

Form C2: Site Compliance and Commissioning test requirements for Type C and Type D Power Generating Modules .. 329

C.3 Installation and Commissioning Confirmation Form 335

C.4 Not used ... 339

C.5 Not used ... 339

C.6 Functional Specification for Dynamic System Monitoring, Fault Recording and Power Quality Monitoring Equipment for Type C and Type D Power Generating Modules .. 340

C.6.1 Purpose and Scope .. 340

C.6.2 Functional Requirements .. 340

C.6.3 Relevant Standards ... 349

C.6.4 Calibration and Testing ... 350

C.7 Simulation Studies for Type C and Type D Power Generating Modules .. 351

C.7.1 Scope .. 351

C.7.2 Power System Stabiliser Tuning ... 351

C.7.3 Reactive Capability across the Voltage Range 351

C.7.4 Voltage Control and Reactive Power Stability 352

C.7.5 Fault Ride Through and Fast Fault Current Injection 353

C.7.6 Limited Frequency Sensitive Mode – Over Frequency (LFSM-O) 354

C.7.7 Limited Frequency Sensitive Mode – Under Frequency (LFSM-U) 355

C.7.8 Voltage and Frequency Controller Model Verification and Validation ... 356

C.8 Compliance Testing of Type C and Type D Synchronous Power Generating Modules .. 358

C.8.1 Scope .. 358

C.8.2 Excitation System Open Circuit Step Response Tests 359

C.8.3 Open & Short Circuit Saturation Characteristics 359

C.8.4 Excitation System On-Load Tests .. 359

C.8.5 Reactive Capability ... 361

C.8.6 Governor and Load Controller Response Performance 362

C.8.7 Compliance with Output Power with falling frequency Functionality Test .. 365

Annex D .. 366

D.0 Power Generating Module Decommissioning Confirmation 366

D.1 Additional Information Relating to System Stability Studies 367

D1.1 System Stability ... 367

D1.2 Clearance times ... 368

D1.3 Power System Stabilisers .. 369

D.2 Loss of Mains (LoM) Protection Analysis .. 370

D2.1 Prime Mover Characteristics .. 370
D.2.2 Analysis of Dynamic Behaviour of Generating Unit Following Load Change ... 371
D.3 Main Statutory and Other Obligations ... 373
D.4 Guidance on Risk Assessment when using RoCoF LOM Protection 376
Foreword

This Engineering Recommendation (EREC) is published by the Energy Networks Association (ENA) and comes into effect on 27 April 2019 for Power Generating Modules first installed on or after that date. It has been prepared and approved for publication under the authority of the Northern Ireland Electricity Distribution Code Review Panel. The approved abbreviated title of this engineering document is “EREC G99/NI”.

Power Generating Modules that fully comply with this EREC G99/NI can be commissioned in advance of 27 April 2019 as they also comply with the pre-existing EREC G591/NI, EREC G75 and ETR 113 requirements.

The definition of Power Generating Modules within this document includes Electricity Storage and hence this document also applies to Electricity Storage devices.¹

¹ This document is a culmination of EREC G59/1/NI, EREC G75, ETR 113, parts of Distribution Code and the European Network Code Requirements for Generators. The Requirements for Generators Network Code has a number of exclusions, one of which is Electricity Storage (except for pumped-storage). A number of requirements in this document, which have originated from the Requirements for Generators Network Code, do not apply to Electricity Storage. Refer to Annex A.4 for full details. All other requirements in this document apply to Electricity Storage.
1 Purpose

1.1 The purpose of this Engineering Recommendation (EREC) is to provide requirements for the connection of Power Generating Facilities to the Distribution Network of the licensed Distribution Network Operator (DNO). It is intended to address all aspects of the connection process from standards of functionality to site commissioning, such that Customers, Manufacturers and Generators are aware of the requirements that will be made by the local DNO before the Power Generating Facility will be accepted for connection to the Distribution Network.

1.2 The requirements set out in this EREC are designed to facilitate the connection of Power Generating Module(s) whilst maintaining the integrity of the Distribution Network, both in terms of safety and supply quality. It applies to all Power Generating Module(s) within the scope of Section 2, irrespective of the type of electrical machine and equipment used to convert any primary energy source into electrical energy. Note that although Electricity Storage is in the scope of this EREC G99/NI, a number of technical requirements do not apply, as Electricity Storage (except for pumped-storage) is currently excluded from the Requirements for Generators Network Code. The exclusions for Electricity Storage and other exceptions are noted in Annex A.4. The rest of this document applies to Electricity Storage in full.

2 Scope and Structure

2.1 This EREC provides the technical requirements for the connection of Type A, Type B, Type C and Type D Power Generating Modules to the Distribution Network of the licensed DNO. For the purposes of this EREC, a Power Generating Module is any source of electrical energy, irrespective of the generating technology and Power Generating Module type. This EREC applies to all Power Generating Modules which are not in the scope of EREC G98/NI or are not compliant with EREC G98/NI requirements.

The requirements set out in this EREC G99/NI shall not apply to the following Generators who should refer to EREC G59/1/NI, ER G75 and ETR 113 in Northern Ireland:

(a) Generators whose Power Generating Modules was already connected to the DNO’s Distribution Network before 27 April 2019 or

(b) Generators who had concluded a final and binding contract for the purchase of main generating plant before 17 May 2018. The Generator shall have notified the DNO of the conclusion of this final and binding contract by 17 November 2018; or

(c) Generators who have been granted a relevant derogation by the Authority.

2 Power Generating Modules that fully comply with this EREC G99/NI can be connected in advance of 27 April 2019 as they also comply with the pre-existing EREC G59 requirements.
The requirements set out in this EREC G99/NI shall apply to Generators owning any Power-Generating Module which has been modified on or after 27 April 2019 to such an extent that it’s fundamental characteristics have changed and need to be reflected in a substantially revised Connection Agreement – see Section 20.3.3 below. For the case of an existing EREC G59/1/NI Power Generating Module being relocated to another existing site, see Section 20.3.4.

2.2 This EREC does not provide advice for the design, specification, protection or operation of Power Generating Modules themselves. These matters are for the Generator to determine.

2.3 Specific separate requirements apply to Power Generating Facilities connected at LV comprising Fully Type Tested, Type A, Power Generating Modules 16 A/phase or less (micro-generators) and these are covered in EREC G98/NI. All Power Generating Modules 16 A/phase or less connecting to the DNO’s Distribution Network shall be Fully Type Tested.³

2.4 The connection of mobile generation operated by the DNO, EREC G98/NI compliant Power Generating Modules, Offshore Power Generating Modules or offshore Transmission Systems containing generation are outside the scope of this Engineering Recommendation.

2.5 This document applies to systems where the Power Generating Module(s) can be paralleled with a Distribution Network. Where the Power Generating Module(s) can only be used as an alternative source of energy to supply the same electrical load within the Customer’s Installation the requirements of Section 7.4 of this EREC G99 apply.

2.6 The generic requirements for all types of Power Generating Facilities within the scope of this document relate to the connection design requirements, connection application and notification process including confirmation of commissioning. The document does not attempt to describe in detail the overall process of connection from application, through agreement, construction and commissioning. It is recommended that the generation connection area of the DNO website is consulted for more general guidance.

2.7 Any Power Generating Module which participates in the balancing mechanism in addition to the general requirements of this EREC will have to comply with the relevant parts of the Grid Code.

2.8 Not used.

2.9 This EREC is written principally from the point of view of the requirements in Northern Ireland. There are some differences in the requirements in Great Britain and Northern Ireland, which are reflected in the separate Grid Codes, Distribution Codes and Engineering Recommendations. These documents should be consulted where necessary, noting that the numbering of sections within these documents is not necessarily the same.

³ This EREC G99 contains an Integrated Micro Generation and Storage procedure, details of which are given in 6.2.2
2.10 Not used.

2.11 **Type B, Type C and Type D pumped-storage Power Generating Modules** shall fulfil all the relevant requirements of this EREC G99/NI in both generating and pumping operation mode. Synchronous compensation operation of pumped-storage **Power Generating Modules** shall not be limited in time by the technical design of **Power Generating Modules**. Pumped-storage variable speed **Power Generating Modules** shall fulfil the requirements applicable to Synchronous **Power Generating Modules** as well as those set out in Section 12.3 or Section 13.4.

2.12 Except for Limited Frequency Sensitive Mode – Overfrequency and the requirements relating to output power with falling frequency or where otherwise stated, requirements of this EREC G99/NI relating to the capability to maintain constant **Active Power** output or to modulate **Active Power** output shall not apply to **Power Generating Modules** of facilities for combined heat and power production embedded in the networks of industrial sites, where all of the following criteria are met:

(a) the primary purpose of those facilities is to produce heat for production processes of the industrial site concerned;

(b) heat and power generating is inextricably interlinked, that is to say any change of heat generation results inadvertently in a change of **Active Power** output and vice versa;

Combined heat and power generating facilities shall be assessed on the basis of their electrical **Registered Capacity**.

2.13 This document details connection process, technical and compliance requirements for **Type A, Type B, Type C and Type D Power Generating Modules**. The structure of the document is illustrated in Figure 2.1.

2.14 Where compliance of an item of plant and/or apparatus is demonstrated using Type Testing, **Manufacturers’ Information** or Equipment Certificates the compliance should be with the version of this EREC G99/NI that is current at the time of ordering the relevant item of plant and/or apparatus, or with any later version of this EREC G99/NI.
3 Normative references

3.1 The following referenced documents, in whole or part, are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

3.2 Regulations and Directives

Health and Safety at Work (Northern Ireland) Order 1978
The Health and Safety at Work (Northern Ireland) Order is the primary piece of legislation covering occupational health and safety in Northern Ireland. The Health and Safety Executive (Northern Ireland) is responsible for enforcing the Order and a number of other Regulations relevant to the working environment.
Electricity Safety, Quality and Continuity Regulations (ESQCR) (Northern Ireland): 2012

Electricity at Work Regulations (Northern Ireland): 1991
The Electricity at Work regulations 1991 abbreviated to EaWR (NI) in this document.

COMMISSION REGULATION (EU) No 2016/631
Establishing a network code on Requirements for Grid Connection of Generators

Concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC

on conditions for access to the network for cross-border exchanges in electricity and repealing Regulation (EC) No 1228/2003

Setting out the requirements for accreditation and market surveillance relating to the marketing of products and repealing Regulation (EEC) No 339/93.

3.3 Standards publications

BS 7671: Requirements for Electrical Installations
IEE Wiring Regulations.

BS EN 50160
Voltage characteristics of electricity supplied by public electricity networks.

BS 7430:
Code of Practice for Earthing.

BS EN 61000 series*
Electromagnetic Compatibility (EMC).

BS EN 61508 series*

BS EN 60255 series*
Measuring relays and protection equipment.

BS EN 61810 series*
Electromechanical Elementary Relays.

BS EN 60947 series*
Low Voltage Switchgear and Controlgear.
BS EN 61869-2:
Instrument transformers. Additional requirements for current transformers.

BS EN 60034-4:
Methods for determining synchronous machine quantities from tests.

BS EN 61400-12-1:

BS EN 62116
Test procedure of islanding prevention measures for utility-interconnected photovoltaic Inverters.

IEC 60909 series*
Short-circuit currents in three-phase a.c. systems. Calculation of currents.

IEC TS 61000-6-5:
Electromagnetic Immunity Part 6.5 Generic Standards. Immunity for Power Station and Substation Environments.

IEC 60364-7-712:
Electrical installations of buildings – Special installations or locations – Solar photovoltaic (PV) power supply systems.

*Where standards have more than one part, the requirements of all such parts shall be satisfied, so far as they are applicable.

3.4 Other publications

ENA Engineering Recommendation G5
Planning levels for harmonic voltage distortion and the connection of non-linear equipment to transmission and distribution networks in the United Kingdom.

ENA Engineering Recommendation G12
Requirements for the application of protective multiple earthing to low voltage networks.

ENA Engineering Recommendation G74
Procedure to meet the requirements of IEC 909 for the calculation of short-circuit currents in three-phase AC power systems.

ENA Engineering Recommendation G83
Recommendations for connection of small-scale embedded Generators (up to 16 A per phase) in parallel with public low voltage distribution networks.

Engineering Recommendation G98/NI
Requirements for the connection of Fully Type Tested Micro-generators (up to and including 16 A per phase) in parallel with public Low-Voltage Distribution Networks in Northern Ireland on or after 27 April 2019

Engineering Recommendation G99/NI
Requirements for the connection of generation equipment in parallel with public distribution networks on or after 27 April 2019
Engineering Recommendation G100
Technical Guidance for Customer Export Limiting Schemes

ENA Engineering Recommendation P2
Security of Supply.

ENA Engineering Recommendation P18
Complexity of 132 kV circuits.

ENA Engineering Recommendation P28
Planning limits for voltage fluctuations caused by industrial, commercial and domestic equipment in the United Kingdom.

ENA Engineering Recommendation P29
Planning limits for voltage unbalance in the UK for 132 kV and below.

ENA Technical Specification 41-24
Guidelines for the design, installation, testing and maintenance of main earthing systems in substations.

ENA Technical Specification 41-38
Power installations exceeding 1 kV AC. – Design of high-voltage open-terminal stations

ENA Engineering Technical report ETR 124
Guidelines for actively managing power flows associated with the connection of a single distributed generation plant.

ENA Engineering Technical report ETR 126
Guidelines for actively managing voltage levels associated with the connection of a single distributed generation plant.

ENA Engineering Technical report ETR 130
The application guide for assessing the capacity of networks containing distributed generation.

Power Park Module Setting Schedule
For **Type C** and **Type D Power Park Modules** connecting to the Northern Ireland Transmission and Distribution System
4 Terms and definitions

4.1 For the purposes of this document, the following terms and definitions apply.

Active Power (P)
The product of voltage and the in-phase component of alternating current measured in units of watts, normally measured in kilowatts (kW) or megawatts (MW).

Active Power Frequency Response
An automatic response of Active Power output, from a Power Generating Module, to a change in system frequency from the nominal system frequency.

Authority
The Northern Ireland Authority for Utility Regulation.

Automatic Voltage Regulator or AVR
The continuously acting automatic equipment controlling the terminal voltage of a synchronous Generating Unit by comparing the actual terminal voltage with a reference value and controlling by appropriate means the output of an Exciter, depending on the deviations.

Black Start
The procedure necessary for a recovery from either (1) a total shutdown, where all generation has ceased and there is no electricity supply across any interconnector, or (2) partial shutdown, which is the same as total shutdown, except that it relates to part of a system.

Centrally Dispatched Generating Unit (CDGU)
A Generating Unit within a Power Generating Facility subject to Central Dispatch, as defined in the Distribution Code.

Combined Cycle Gas Turbine Module or CCGT Module
A collection of Generating Units comprising one or more Gas Turbine Units (or other gas based engine units) and one or more Steam Units where, in normal operation, the waste heat from the Gas Turbines is passed to the water/steam system of the associated Steam Unit or Steam Units and where the component units within the CCGT Module are directly connected by steam or hot gas lines which enable those units to contribute to the efficiency of the combined cycle operation of the CCGT Module.

Connection Agreement
A contract between the Distribution Network Owner and the Generator, which includes the relevant site and specific technical requirements for the Power Generating Module.

Connection Point
The interface at which the Power Generating Module or Generator’s Installation is connected to a Distribution Network, as identified in the Connection Agreement. For the avoidance of doubt two, or more, connection circuits constitutes a single Connection Point for the purposes of EREC G99/NI.

Controller
A device for controlling the functional operation of a Power Generating Module.
Customer
A person who is the owner or occupier of an installation or premises that are connected to the Distribution Network.

Customer's Installation
The electrical installation on the Customer's side of the Connection Point together with any equipment permanently connected or intended to be permanently connected thereto.

Detailed Planning Data (DPD)
Data specified in Part B of the Appendix to the Distribution Code Planning Code.

Distribution Code
The document named as such, prepared pursuant to condition 27 of the Licence held by the DNO.

Distribution Network
An electrical network for the distribution of electrical power from and to third party[s] connected to it, a transmission or another Distribution Network.

Distribution Network Owner (DNO)
Northern Ireland Electricity Networks Limited acting in its capacity as the owner of the Distribution Network.

Droop
The ratio of the per unit steady state change in speed, or in frequency to the per unit steady state change in power output. Whilst not mandatory, it is often common practice to express Droop in percentage terms.

Electricity Safety, Quality And Continuity Regulations (Northern Ireland) (ESQCR (NI))
A Statutory Rule of Northern Ireland entitled The Electricity Safety, Quality and Continuity Regulations (Northern Ireland) 2012 as amended from time to time.

Electricity Storage
Electricity Storage in the electricity system is the conversion of electrical energy in to a form of energy which can be stored, the storing of that energy, and the subsequent reconversion of that energy back into electrical energy.

Energisation Operational Notification (EON)
A notification issued by the DNO to a Generator prior to energisation of its internal network.

Excitation System
The equipment providing the field current of a machine, including all regulating and control elements, as well as field discharge or suppression equipment and protective devices.

Exciter
The source of the electrical power providing the field current of a synchronous machine.
Fast Fault Current
A current injected by a Power Park Module during and after a voltage deviation caused by an electrical fault with the aim of identifying a fault by network protection systems at the initial stage of the fault, supporting system voltage retention at a later stage of the fault and system voltage restoration after fault clearance.

Fault Ride Through
The capability of Power Generating Modules to be able to remain connected to the Distribution Network and operate through periods of low voltage at the Connection Point caused by secured faults.

Final Operational Notification (FON)
A notification issued by the DNO to a Generator, who complies with the relevant specifications and requirements in this EREC G99/NI, allowing them to operate a Power Generating Module by using the Distribution Network connection.

Frequency Response Deadband
An interval used intentionally to make the frequency control unresponsive.

Frequency Response Insensitivity
The inherent feature of the control system specified as the minimum magnitude of change in the frequency or input signal that results in a change of output power or output signal.

Frequency Sensitive Mode (FSM)
The operating mode of a Power Generating Module in which the Active Power output changes in response to a change in system frequency, in such a way that it assists with the recovery to target frequency.

Fully Type Tested
A Power Generating Module which has been tested to ensure that the design meets the relevant technical and compliance requirements of this EREC G99/NI, and for which the Manufacturer has declared that all similar Power Generating Modules supplied will be constructed to the same standards and will have the same performance. In the case where Interface Protection functionality is included in the tested equipment, all similar products will be manufactured with the same protection settings as the tested product.

Fully Type Tested
Any apparatus which produces electricity. This includes Micro-generators and Electricity Storage devices. Note that although Electricity Storage is in the scope of EREC G99/NI, some aspects do not apply. The exclusions are noted where they apply in the text.

Generating Unit
Any apparatus which produces electricity. This includes micro-generators and energy storage devices. Note that although storage is in the scope of EREC G99, some aspects do not apply. The exclusions are noted where they apply in the text.

Generator
A person who generates electricity under Licence or exemption under The Order and whose Power Generating Facility is directly or indirectly connected to a Distribution Network. For avoidance of doubt, also covers any competent person or agent working on behalf of the Generator. Often referred to as a distributed or
embedded generator. Also for the avoidance of doubt any Customer with generation connected to that Customer’s Installation is a Generator.

Generator Performance Chart
A diagram showing the Active Power (MW) and Reactive Power (MVar) capability limits within which a Synchronous Power Generating Module or Power Park Module at the Generating Unit terminals or the Connection Point as appropriate for the Power Generating Facility will be expected to operate under steady state conditions.

Generator’s Installation
The electrical installation on the Generator’s side of the Connection Point together with any equipment permanently connected or intended to be permanently connected thereto.

Grid Code
The Grid Code prepared pursuant to the TSO’s Licence, as from time to time revised in accordance with the TSO’s Licence.

High Voltage (HV)
A voltage exceeding 650 V.

Installer
The person who is responsible for the installation of the Power Generating Module(s).

Integrated Micro Generation and Storage
Power Generating Modules that are Electricity Storage devices and Power Generating Modules that are not Electricity Storage devices that form part of a Generator’s Installation.

This is illustrated in Figure 4.7.

Interface Protection
The electrical protection required to ensure that any Power Generating Module is disconnected for any event that could impair the integrity or degrade the safety of the Distribution Network. Interface Protection may be installed on each Power Generating Module or at the Connection Point for the Power Generating Facility.

Interim Operational Notification (ION)
A notification from the DNO to a Generator acknowledging that the Generator has demonstrated compliance, except for the Unresolved Issues with this EREC G99/NI or with specific items in the Connection Agreement in respect of the plant and apparatus specified in such notification.

Intermittent Power Source
The primary source of power for a Generating Unit that cannot be considered as controllable, eg wind, wave or solar.

Inverter

4 In EREC G98/NI a Power Generating Module with nominal current up to and including 16 A per phase is known as a Micro-generator.
A device for conversion from Direct Current to nominal frequency Alternating Current.

Licence
A Licence granted under The Order.

Limited Frequency Sensitive Mode
A mode whereby the operation of a Power Generating Module is frequency insensitive.

Limited Frequency Sensitive Mode – Overfrequency (LFSM-O)
A Power Generating Module operating mode which will result in Active Power output reduction in response to a change in system frequency once the system frequency exceeds a certain value.

Limited Frequency Sensitive Mode – Underfrequency (LFSM-U)
A Power Generating Module operating mode which will result in Active Power output increase in response to a change in system frequency once the system frequency falls below a certain value.

Limited Operational Notification (LON)
A notification issued by the DNO to a Generator who had previously attained FON status but is temporarily subject to either a significant Modification or loss of capability resulting in non-compliance with the relevant specifications and requirements.

Low Voltage (LV)
A voltage not exceeding 250 V.

Manufacturer
A person or organisation that manufactures Generating Units.

Manufacturer’s Data & Performance Report
A report submitted by a Manufacturer to the DNO relating to a specific version of a Generating Unit demonstrating the performance characteristics of such Generating Unit in respect of which the DNO has evaluated its relevance for the purposes of compliance.

Manufacturers' Information
Information in suitable form provided by a Manufacturer in order to demonstrate compliance with one or more of the requirements of this EREC G99/NI. Where Equipment Certificate(s) as defined in EU 2016/631 cover all or part of the relevant compliance points, the Equipment Certificate(s) demonstrate compliance without need for further evidence for those aspects within the scope of the Equipment Certificate.

Minimum Stable Operating Level
The minimum Active Power output which a Power Generating Module can reasonably generate as registered with the DNO.

Minimum Regulating Level
The minimum Active Power, as agreed between the DNO and the Generator, down to which the Power Generating Module can control Active Power.

Modification
Any actual or proposed replacement, renovation, modification, alteration or construction by a Generator to any Power Generating Module, or the manner of its operation.

MW Output
The actual Active Power output in MW of a Generating Unit as at the Connection Point.

Network
Plant and apparatus connected together in order to transmit or distribute electricity.

Order

Over-Excitation Limiter
Shall have the meaning ascribed to that term in IEC 34-16-1.

Phase (Voltage) Unbalance
The ratio (in percent) between the root mean square (RMS) values of the negative sequence component and the positive sequence component of the voltage.

Point Of Common Coupling
The point on a Distribution Network, electrically nearest the Customer's Installation, at which other Customers are, or may be, connected.

Power Factor
The ratio of Active Power to Apparent Power.

Power Generating Facility (PGF)
A facility that converts primary energy into electrical energy and which consists of one or more Power Generating Modules connected to a Network at one or more Connection Points.

Power Generating Module (PGM)
Either a Synchronous Power Generating Module or a Power Park Module.

Power Generating Module Document (PGMD)
A document provided by the Generator to the DNO for a Type B, Type C or Type D Power Generating Modules which confirms that the Power Generating Module’s compliance with the technical criteria set out in this EREC G99 has been demonstrated and provides the necessary data and statements, including a statement of compliance.

Power Park Module (PPM)
A Generating Unit or ensemble of Generating Units (including Electricity Storage devices) generating electricity, which is either asynchronously connected to the network or connected through power electronics, and that may be connected through a transformer and that also has a single Connection Point to a Distribution Network.

Power System Stabiliser (PSS)
Equipment controlling the output of a Power Generating Module in such a way that power oscillations of the machine are damped. Input variables may be speed, frequency, or power or a combination of variables.

Q/Pmax
The ratio of **Reactive Power** to the **Registered Capacity**. The relationship between **Power Factor** and Q/P_{max} is given by the formula:

$$\text{Power Factor} = \cos \left[\arctan\left(\frac{Q}{P_{\text{max}}} \right) \right]$$

Rated Field Voltage

Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS4999 Section 116.1 : 1992].

Reactive Power (Q)

The product of voltage and current and the sine of the phase angle between them which is normally measured in kilovar (kVAr) or megavar (MVAr).

Registered Capacity (P_{max})

The normal full load capacity of a **Power Generating Module**, or of a **Power Generating Facility**, as declared by the **Generator** less the MW consumed when producing the same.

For **Power Generating Modules** connected to the DNO’s **Distribution Network** via an **Inverter**, the **Inverter** rating is deemed to be the **Power Generating Module**’s rating.

Slope

The ratio of the steady state change in voltage, as a percentage of the nominal voltage, to the steady state change in **Reactive Power** output, in per unit of **Reactive Power** capability. For the avoidance of doubt, the value indicates the percentage voltage reduction that will result in a 1 per unit increase in **Reactive Power** generated.

Standard Planning Data (SPD)

Data specified in Appendix A of the **Distribution Code** Planning Code.

Statement on Distribution System Capacity

The statement of that name prepared pursuant to condition 32 of the **Licence** held by the **DNO**.

Station Transformer

A transformer supplying electrical power to the auxiliaries of a **Power Generating Facility**, which is not directly connected to the **Power Generating Module** terminals (typical voltage ratio being 110/11 kV).

Step Voltage Change

Following system switching, a fault or a planned outage, the change from the initial voltage level to the resulting voltage level after all the **Power Generating Module Automatic Voltage Regulator (AVR)** and static VAR compensator (SVC) actions, and transient decay (typically 5 s after the fault clearance or system switching have taken place), but before any other automatic or manual tap-changing and switching actions have commenced.

Supplier

(a) A person supplying electricity under an Electricity Supply **Licence** pursuant to article 10(1)(c) of the **Order**; or

(b) A person supplying electricity under exemption under the **Order**; in each case acting in its capacity as a **Supplier** of electricity to **Customers**.
System Stability
The ability of the system, for a given initial operating condition, to regain a state of operating equilibrium, after being subjected to a given system disturbance, with most system variables within acceptable limits so that practically the whole system remains intact.

Synchronous Power Generating Module
Means an indivisible set of Generating Units (ie one or more units which cannot operate independently of each other) which can generate electrical energy such that the frequency of the generated voltage, the generator speed and the frequency of network voltage are in a constant ratio and thus in Synchronism. Each set of Generating Units which cannot run independently from each other (such as those Generating Units on a common shaft or as part of an integrated CCGT Module), but can run independent of any other generating equipment, form an individual Synchronous Power Generating Module. Any prime mover and alternator combination that can run as an independent unit (irrespective of normal operating practice) is a Synchronous Power Generating Module.

This is illustrated in Figure 4.1a and 4.1b.

Synchronism
The condition under which a Power Generating Module or system is connected to another system so that the frequencies, voltage and phase relationships of that Power Generating Module or system, as the case may be, and the system to which it is connected are similar within acceptable tolerances.

Total System
The integrated system of connected Power Generating Modules, Transmission System, Distribution Networks and associated electrical demand.

Transmission System
A system of High Voltage lines and plant owned by the holder of a transmission Licence and operated by the TSO, which interconnects Power Generating Facilities and substations.

Transmission System Operator (TSO)
The holder of the Licence granted pursuant to Article 10(1)(b) of the Order to operate a Transmission System.

Type A
A Power Generating Module with a Connection Point below 110 kV and a Registered Capacity of 0.8 kW or greater but less than 100 kW.

Type B
A Power Generating Module with a Connection Point below 110 kV and Registered Capacity of 100 kW or greater but less than 5 MW.

Type C
A Power Generating Module with a Connection Point below 110 kV and a Registered Capacity of 5 MW or greater but less than 10 MW.

Type D
A Power Generating Module with a Connection Point at, or greater than, 110 kV; and/or with a Registered Capacity of 10 MW or greater.
Type Tested
A product which has been tested to ensure that the design meets the relevant requirements of this EREC G99/NI, and for which the Manufacturer has declared that all similar products supplied will be constructed to the same standards and will have the same performance. The Manufacturer’s declaration will define clearly the extent of the equipment that is subject to the tests and declaration. In the case where Interface Protection functionality is included in the tested equipment, all similar products will be manufactured with the same protection settings as the tested product.

Examples of products which could be Type Tested include Generating Units, Inverters and the Interface Protection system.

Unresolved Issues
Any relevant EREC G99/NI requirements identified by the DNO with which the Generator has not demonstrated compliance to the DNO’s reasonable satisfaction at the date of issue of the Interim Operational Notification and/or Limited Operational Notification and which are detailed in such Interim Operational Notification and/or Limited Operational Notification.

Under Excitation Limiter
Shall have the meaning ascribed to that term in IEC 34-16-1.

User Data Library (UDL)
A common directory structure for information in support of compliance statements and technical data. The structure of UDL is given in Appendix A of the Power Park Module Setting Schedule.
4.2 Illustrative examples of Power Generating Module types and categorisation

Figures 4.2 to 4.6 illustrate examples of different Power Generating Modules comprising Power Park Modules and Synchronous Power Generating Modules to assist with the interpretation of Power Park Module categorisation.

Figure 4.7 illustrates an example of an Integrated Micro Generation and Storage installation.

Key to following Figures:
ST: Steam Turbine
GT: Gas Turbine
HR: Heat Recovery Unit
CP: Connection Point

- **Synchronous Power Generating Module**
- **Clutch**
- **Inverter or asynchronous Generating Unit**
- **Electricity Storage device**
- **Photovoltaic source**
- **Wind turbine**
- **Doubly fed induction generator**
Figure 4.1a Example of a Synchronous Power Generating Module comprising a gas turbine (GT) with a steam turbine (ST) on a separate shaft (simplified diagram)

Figure 4.1b Example of a Synchronous Power Generating Module comprising a gas turbine (GT) with a steam turbine (ST) on the same shaft (simplified diagram)
Figure 4.2 (a) 3 x 2 kW Inverter connected Generating Units
= 6 kW Type A Power Park Module
= 6 kW Power Generating Facility

Figure 4.2 (b) 3 x 2 kW Type A Synchronous Power Generating Modules
= 6 kW Power Generating Facility
Figure 4.2 (c) 3 x 40 kW Type A Synchronous Power Generating Modules
= 120 kW Power Generating Facility

Figure 4.2 Examples of Type A Power Generating Modules

1 x 40 kW Inverter connected plus 2 x 40 kW asynchronous Generating Units
= 120 kW Type B Power Park Module
= 120 kW Power Generating Facility

Figure 4.3 Example of Type B Power Generating Modules
3 x 40 kW Type A Synchronous Power Generating Modules plus 1 x 40 kW Inverter connected and 2 x 40 kW asynchronous Generating Units

= 3 x 40 kW Type A Synchronous Power Generating Modules plus 120 kW Type B Power Park Module

= 240 kW Power Generating Facility

Figure 4.4 Example of combination of Type A and Type B Power Generating Modules in same Power Generating Facility
5 x 3 MW asynchronous **Generating Units**

= 1 X 15 MW **Type D Power Park Module**

= 1 x 15 MW **Type D Power Generating Module**

= 15 MW **Power Generating Facility**

Figure 4.5 Example of Type D Power Generating Facility comprised of a number of Generating Units
3 x 4 MW Type B Gas Engines plus 1 x 500 kW asynchronous Generating Unit plus 1 x 500 kW Inverter plus 1 x 500 kW Inverter with 200 kW Integral Electricity Storage plus 1 MW Electricity Storage

= 3 x 4 MW Type B Synchronous Power Generating Modules plus 1.5 MW Type B Power Park Module plus 1 MW Electricity Storage

= 14.5 MW Power Generating Facility

Note the Electricity Storage device using the same Inverter as the PV does not contribute to the Power Park Module Registered Capacity, because the Registered Capacity is based on the Inverter rating. The Electricity Storage device using a dedicated Inverter is also a Power Generating Module but is excluded from some of the requirements of this EREC G99/NI5, but included in the Power Generating Facility.

Figure 4.6 Example of Connection of Electricity Storage with Type A and Type B Power Generating Modules in same Power Generating Facility

5 Annex A.4.2 provides details
1 x 3.68 kW PV Inverter plus 1 x 3.68 kW Electricity Storage device
= 3.68 kW Micro-generator Power Park Module plus 3.68 kW Electricity Storage device
= 7.36 kW Power Generating Facility

Figure 4.7 Example of a Integrated Micro Generation and Storage Installation
5 Legal Aspects

5.1 The operation and design of the electricity system in Northern Ireland is defined principally by Directive 2009/72/EC, the Electricity (Northern Ireland) Order 1992 ("The Order"), the Electricity Safety, Quality and Continuity Regulations (Northern Ireland) 2012, as well as the general considerations under the Health and Safety at Work (Northern Ireland) Order 1978 and the Electricity at Work Regulations (Northern Ireland): 1991. A brief summary of the main statutory obligations on the DNO, Generators and Customers is included as Annex D.3.

5.2 Directive 2009/72/EC gives rise to a number of pieces of other EU law, the most relevant of which is Commission Regulation (EU) 2016/631, the Network Code Requirements for all Generators (RfG). This code supersedes UK law, although it is not a complete set of requirements. This EREC has been written to comply fully with the requirements of the RfG, and to include other requirements required for connection to the Northern Ireland power system.

5.3 Under Section 24 of The Order, Generators may be required to enter into a special Connection Agreement with the DNO. Such a Connection Agreement will specify the terms and conditions including technical, operating, safety and other requirements under which Power Generating Modules are entitled to remain connected to the Distribution Network. It is usual to include site specific commercial issues, including recovery of costs associated with the connection, use of system charges and the applicable loss adjustment factors, in Connection Agreements.

5.4 The DNO is required by their Licence to have in force and comply with the Distribution Code. Generators will be bound by their Connection Agreements and Licences if applicable, to comply with the Distribution Code.

5.5 In accordance with CC9.1 of the Distribution Code, when details of the interface between a Power Generating Facility and the Distribution Network have been agreed a site responsibility schedule detailing ownership, maintenance, safety and control responsibilities will be drafted. The site responsibility schedule and operation drawing shall be displayed at the point of interconnection between the DNO’s Distribution Network and Generator’s Installation, or as otherwise agreed.

5.6 The DNO has statutory and Licence obligations within which they have to offer the most economic, technically feasible option for connecting Power Generating Facilities to their Distribution Networks. The main general design obligations imposed on the DNO are to:

(a) maintain supplies to their Customers within defined statutory voltage and frequency limits;
(b) ensure that the Distribution Networks at all voltage levels are adequately earthed;
(c) comply with the “Security of Supply” criteria defined in EREC P2;
(d) meet improving standards of supply in terms of customer minutes lost (CMLs) and the number of customer interruptions (CIs);
(e) facilitate competition in the connection, generation and supply of electricity.
5.7 Failure to meet any of the above obligations will incur legal or regulatory penalties. The first two criteria, amongst others, define the actions needed to allow islanded operation of the Power Generating Facility or to ensure that the Power Generating Facility is rapidly disconnected from the Distribution Network under islanded conditions. The next two criteria influence the type of connection that may be offered without jeopardising regulated standards.

5.8 General conditions of supply to Customers are also covered by Regulation 24 of the ESQCR (NI). Under Regulation 27 of the ESQCR (NI) no DNO is compelled to commence or continue a supply if the Customer's Installation may be dangerous or cause undue interference with the Distribution Network or the supply to other Customers. The same regulation empowers the DNO to disconnect any part of the Customer's Installation which does not comply with the requirements of Regulation 27. It should also be noted that each installation has to satisfy the requirements of the HASWA (NI) Order 1978 and the EaWR (NI) 1991.

5.9 The DNO shall refuse to allow the connection of a Power Generating Module which does not comply with the requirements and connection process set out in this EREC G99/NI and which is not covered by a derogation granted by the Authority or a LON as described in section 19.6.

5.10 Regulations 22 and 23 of the ESQCR (NI) require installations that have alternative sources of energy to satisfy Regulation 22 in relation to switched alternative supplies, and Regulation 23 in the case of sources of energy running in parallel with the Distribution Network.

5.11 Under Regulation 23 of the ESQCR (NI), no person may operate Power Generating Modules in parallel with a public Distribution Network without the agreement of the DNO.

5.12 All Generators have to comply with the appropriate parts of the ESQCR (NI).

5.13 Any collection of Power Generating Modules under the control of one Generator in one installation is classed in the industry codes as a Power Generating Facility.

5.14 Power Generating Facilities that are to be connected to a Distribution Network and contain Power Generating Modules that are classified as Centrally Dispatched Generating Units (CDGU), as defined in the Grid Code, will then have to comply with the applicable Grid Code requirements for Power Generating Modules.

5.15 Information, which should assist Generators wishing to connect to the Distribution Network at High Voltage (HV), is provided in the generation connection area of the DNO website.
5.16 Under the terms of The Order, generation of electricity is a licensed activity, although the Department of Economic Development, or its successors may by order grant exemptions. Broadly, Power Generating Facilities of a Registered Capacity less than 10 MW are automatically exempt from the need to hold a Licence.

5.17 Generators will need appropriate contracts in place for the purchase of any energy that is exported from the Generators’ Power Generating Facilities, and for any energy imported. For this purpose the Generator will need contracts with one or more Suppliers.

5.18 Generators wishing to trade system services will need appropriate contracts in place with the Transmission System Operator.

5.19 Electricity Storage is treated just as generation. Accordingly, this EREC G99/NI includes Electricity Storage in the definition of Generating Unit and Annex A.4 details certain requirements which do not apply to Electricity Storage devices.

6 Connection Application

6.1 General

6.1.1 This document describes the processes that shall be adopted for both connection of a single Power Generating Module and installations that comprise of a number of Power Generating Modules.

6.1.2 Type A Power Generating Module(s) ≤ 16A per phase and EREC G98/NI compliant

6.1.2.1 A connection procedure to facilitate the connection and operation of Fully Type Tested Power Generating Modules with aggregate Registered Capacity of less than or equal to 16 A per phase in parallel with public Low Voltage Distribution Network is given in EREC G98/NI and is not considered further in this document. These are referred to as micro-generators.

6.1.3 Power Park Modules

6.1.3.1 Where an installation comprises a single Generating Unit, the application process, technical and commissioning requirements are based on the Registered Capacity of that Generating Unit. Where an installation comprises multiple Generating Units the application process, technical and commissioning requirements will generally be based on the Registered Capacity of each Power Park Module, and also on the extent to which each Power Park Module is Type Tested. However, note that if the aggregated capacity of all the Power Park Modules in the Power Generating Facility (ie the Registered Capacity of the Power Generating Facility) reaches the threshold for a Centrally Dispatched Generating Unit, as defined in the Grid Code (ie 10 MW), then the Generator will have to ensure compliance with relevant parts of the Grid Code. Paragraph 6.4.4 references the additional data requirements.

6.1.3.2 Where a new Generating Unit is connected to an existing installation the treatment of the addition will depend on the EREC under which the existing installation was connected. If the existing installation was connected under EREC G59 or EREC G83 then the new Generating Unit will be treated as a separate Power Park Module and managed for compliance with this EREC G99/NI as a separate Power Generating Module. If, however, the existing installation was commissioned in compliance with EREC G98/NI or EREC G99/NI, then the new Power Park Module shall be added to the aggregate capacity of the complete installation which shall be used to determine which EREC is applicable.

6.1.4 Synchronous Power Generating Modules

6.1.4.1 Where an installation comprises a single Synchronous Power Generating Module or multiple Synchronous Power Generating Modules, the application process, technical and commissioning requirements are based on the Registered Capacity of each Synchronous Power Generating Module.

6.1.4.2 Where one or more new Synchronous Power Generating Module(s) is to be connected to an existing installation then each new Power Generating Module will be treated as a separate Synchronous Power Generating Module. Only the new Power Generating Module will be required to meet the requirements of this EREC G99/NI or EREC G98/NI if applicable. However, note that if the aggregated capacity of all the Power Generating Modules in the Power Generating Facility (ie the Registered Capacity of the Power Generating Facility) reaches the threshold for a Centrally Dispatched Generating Unit, as defined in the Grid Code (ie 10 MW), then the Generator will have to ensure compliance with relevant parts of the Grid Code. Paragraph 6.4.4 references the additional data requirements.

6.1.5 Illustrative examples

6.1.5.1 Table 6.1 is provided to illustrate some of the connection scenarios and the EREC requirements.

6.1.5.2 In respect of Table 6.1 the aggregate Registered Capacity of all the Power Generating Modules in the Power Generating Facility will be taken into account when the DNO considers the effect of the connection on the Distribution Network.
Table 6.1 Examples of connection scenarios

<table>
<thead>
<tr>
<th>Details of the existing Power Generating Facility</th>
<th>Planned expansion to the Power Generating Facility</th>
<th>Compliance requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>Type A Generating Unit(s)</td>
<td>The unit(s) comprise a new Power Generating Module for compliance EREC G99/NI.</td>
</tr>
<tr>
<td>Synchronous Power Generating Modules commissioned under EREC G83 or EREC G59</td>
<td>Synchronous Power Generating Modules</td>
<td>Original and additional Power Generating Modules treated separately. Only additional Power Generating Modules need to comply with EREC G99/NI; the entire Power Generating Facility needs to comply with operational requirements.</td>
</tr>
<tr>
<td>Synchronous Power Generating Modules commissioned under EREC G98/NI or EREC G99/NI</td>
<td>Synchronous Power Generating Modules</td>
<td>Original and additional Power Generating Modules treated separately. All Power Generating Modules need to comply with EREC G99/NI and with operational requirements.</td>
</tr>
<tr>
<td>Synchronous Power Generating Modules commissioned under EREC G83 or EREC G59 and Synchronous Power Generating Modules commissioned under EREC G98/NI or EREC G99/NI</td>
<td>Synchronous Power Generating Modules</td>
<td>Original and additional Power Generating Modules treated separately. Additional Power Generating Modules need to comply with EREC G99/NI; all need to comply with operational requirements.</td>
</tr>
<tr>
<td>Power Park Module commissioned under EREC G83 or EREC G59</td>
<td>Asynchronous Generating Units</td>
<td>New units form a new Power Park Module. Original and additional Power Park Modules treated separately. Only additional Power Park Modules need to comply with EREC G99/NI; all need to comply with operational requirements.</td>
</tr>
<tr>
<td>Power Park Module commissioned under EREC G98/NI or EREC G99/NI</td>
<td>Asynchronous Generating Units</td>
<td>Units aggregated to form a new single Power Generating Module. Compliance required for the new module size, with EREC G99/NI and with operational requirements.</td>
</tr>
<tr>
<td>Power Park Module commissioned under EREC G98/NI or EREC G99/NI</td>
<td>Electricity Storage DC coupled (ie connected to the existing Inverters with no change to Inverters)</td>
<td>No compliance effect. Compliance remains based on existing Inverters, ie on the existing Power Park Module. Generators shall, under their Connection Agreement apply to the DNO before connecting new Electricity Storage devices.</td>
</tr>
<tr>
<td>Power Park Module commissioned under EREC G98/NI or EREC G99/NI</td>
<td>Electricity Storage AC coupled – ie storage complete with its own Inverters</td>
<td>The new Electricity Storage devices form an independent Power Park Module which needs to comply with EREC G99/NI, although is exempt from certain requirements as listed in Annex A.4.</td>
</tr>
</tbody>
</table>

7 Or EREC G98/NI if Type Tested and 16A/phase or less

8 Or EREC G98/NI if Type Tested with an aggregate Registered Capacity of 16 A/phase or less
Figure 6.1. Example: 1 x 80 kW Synchronous Power Generating Module to EREC G59 plus 1 x 80 kW Type A Synchronous Power Generating Module to EREC G99/NI

= 160 kW Power Generating Facility

Figure 6.2. Example: 2 x 80 kW Type A Synchronous Power Generating Modules to EREC G99/NI

= 160 kW Power Generating Facility
Figure 6.3. Example: Existing: 2 x 4 MW Type B Synchronous Power Generating Modules with new unit = 3 x 4 MW Type B Synchronous Power Generating Modules

= 12 MW Power Generating Facility (Centrally Dispatched Generating Unit)

Figure 6.4 Example: 1 x 80 kW Power Park Module to EREC G59 plus 1 x 80 kW Type A Power Park Module to EREC G99/NI

= 160 kW Power Generating Facility
Note: The addition of new Inverter connected or asynchronous Generating Units to an existing Power Park Module, which was installed under EREC G99/NI, takes the Power Generating Module from Type A to Type B, hence the existing Generating Units technical requirements will change in accordance with this EREC G99/NI.

Figure 6.5. Example: 1 x 80 kW Type A Power Park Module to EREC G99/NI plus later expansion of 2 x 40 kW Generating Units

- 1 x 160 kW Type B Power Park Module
- 160 kW Power Generating Facility
Figure 6.6. Example: Existing 6 kW Type A Power Park Module to EREC G99/NI plus later addition of 3 x 1 kW Electricity Storage devices (Compliance remains the same)

= 6 kW Power Generating Facility
Figure 6.7. Example: Existing 6 kW Type A Power Park Module to EREC G99/NI plus later addition of 3 x 1 kW Electricity Storage devices with own Inverters

= 6 kW Type A Power Park Module plus 3 kW Electricity Storage Power Park Module (exempt from certain requirements)

= 9 kW Power Generating Facility
6.1.6 Interaction with the TSO

6.1.6.1 It should be noted that if the Registered Capacity of all Power Generating Module (synchronous together with asynchronous) on one or more sites in common ownership is greater than 10 MW, then the Generator becomes licensable.

6.1.6.2 Generators with an agreement with the TSO may be required to comply with applicable requirements of the Grid Code. Where Grid Code requirements apply, it is the Generator’s responsibility to comply with the relevant parts of both the Distribution Code and Grid Code.

6.2 Application for Connection

6.2.1 Information about the Power Generating Module(s) is needed by the DNO so that it can assess the effect that a Power Generating Facility may have on the Distribution Network. This EREC G99/NI details the parameters to be supplied by a Generator wishing to connect Power Generating Module(s) that do not comply with EREC G98/NI to a Distribution Network. This EREC G99/NI also enables the DNO to request more detailed information if required.

6.2.2 Integrated Micro Generation and Storage procedure

6.2.2.1 The Generator may wish to install Integrated Micro Generation and Storage. Where all of the following conditions apply, the Integrated Micro Generation and Storage procedure can be followed:

- The Power Generating Modules are located in a single Generator’s Installation;
- The total aggregate capacity of the Power Generating Modules (including Electricity Storage devices) is between 16 A and 32 A per phase;
- The total aggregate capacity of the Power Generating Modules that are Electricity Storage devices does not exceed 16 A per phase and the total aggregate capacity of the Power Generating Modules that are not Electricity Storage devices does not exceed 16 A per phase. Note that if the total aggregated capacity of Electricity Storage and non-Electricity Storage devices is no greater than 16 A per phase, the single premises procedure described in EREC G98/NI applies;
All of the Power Generating Modules (including Electricity Storage devices) are connected via EREC G98/NI Fully Type Tested Inverters;\(^9\)

An EREC G100 compliant export limitation scheme is present that limits the export from the Generator’s Installation to the Distribution Network to 16 A per phase; and

The Power Generating Modules will not operate when there is a loss of mains situation.

6.2.2.2 If all the conditions in 6.2.2.1 are satisfied, the Generator should complete an application in a format as shown in Form A1-2 (Annex A.1). Otherwise the Generator should refer to the connection application procedure for Type A Power Generating Modules.

6.2.2.3 The planned commissioning date stated on the application form shall be within 10 working days and 3 months from the date that the application is submitted to the DNO. Confirmation of the commissioning of each Power Generating Module shall be made no later than 28 days after commissioning (where tests and checks are not witnessed). Confirmation shall be provided in a format as shown in Form A3-2 (Annex A.3). In addition to Form A3-2, an EREC G100 Export Limitation Scheme Installation and Commissioning Tests form shall be submitted to the DNO to confirm that the Export Limitation Scheme meets the requirements set out in EREC G100. Confirmation shall be provided in a format as shown in EREC G100 Appendix B.

6.2.2.4 Note that a number of sections of EREC G98/NI do not apply to Electricity Storage devices that are covered by this procedure. Refer to Appendix 1 of EREC G98/NI for details.

6.2.3 Power Generating Facilities which include Type A Power Generating Modules

For Type A Power Generating Modules the compliance, testing and commissioning requirements are detailed in section 16 of this EREC G99/NI.

The Generator should apply to the local DNO for connection using the DNO’s Standard Application Form (available from the DNO’s website). On receipt of the application, the DNO will assess whether any Distribution Network studies are required and whether there is a requirement to witness the commissioning tests. In some cases studies to assess the impact on the Distribution Network may need to be undertaken before a firm quotation can be provided to the Generator. On acceptance of the quote, any works at the connection site and any associated facilitating works will need to be completed before the Power Generating Module can be commissioned. On successful completion of the commissioning tests, the DNO will sanction permanent energisation of the Power Generating Module in accordance with Section 16 of this EREC G99/NI.

\(^9\) Or Type Tested to EREC G83, where the Power Generating Module was installed prior to 27 April 2019
6.2.4 **Power Generating Facilities** which include **Type B**, **Type C** or **Type D Power Generating Modules**

6.2.4.1 The connection process is similar to that described in 6.2.2 above, although detailed system studies will almost certainly be required and consequently the **Generator** might need to provide additional information. The information should be provided using the Standard Application Form (generally available from the **DNO**’s website). The data that will generally be required is defined in the **Distribution Code**, **Planning Code Appendices A and B**, and **Power Park Module Setting Schedule** as appropriate.

6.2.4.2 For **Type B** and **Type C Power Generating Modules** the compliance, testing and commissioning requirements are detailed in sections 17 and 18 respectively of this **ERECE G99/NI**. On successful completion of a **Type B or Type C Power Generating Module Document** the **DNO** will issue a **Final Operational Notification** to the **Generator**.

6.2.4.3 For a **Type D Generating Unit**, once all the relevant documents have been provided to the **DNO** to its satisfaction the **DNO** will issue an **Energisation Operational Notification** to the **Generator** followed by an **Interim Operational Notification** and a **Final Operational Notification**. This staged process is described further in section 19 of this **ERECE G99/NI**.

6.2.4.4 Generators who own **Type B** and **Type C Power Generating Modules** do not have permanent rights to operate their **Power Generating Modules** without a valid **Final Operational Notification** which will be issued by the **DNO** following completion of the commissioning tests and process, refer to the **PPM Setting Schedule** and paragraphs 17.8.2 and 18.4.5 as applicable. **Generators** who own **Type D Power Generating Modules** do not have rights to operate their **Power Generating Modules** without either

 a) a valid **Final Operational Notification**, refer to the **PPM Setting Schedule** and paragraph 19.5.4 as applicable,

 b) an **Interim Operational Notification** refer to the **PPM Setting Schedule** and paragraph 19.3.6 as applicable, or

 c) a **Limited Operational Notification**, refer to the **PPM Setting Schedule** and paragraph 19.6.4.1 as applicable.

6.3 **System Analysis for Connection Design Type A, Type B, Type C and Type D**

6.3.1 The **DNO** uses a variety of modelling tools to undertake system analysis. Their exact needs for data and models will vary dependent on the voltage level, size, and location of the connection. Generally the **DNO** will seek the key information from the **Generator** via the application forms referred to in 6.2 above. Occasionally the **DNO** may also need additional data for modelling purposes and will seek this information in accordance with the requirements of this document and the **Distribution Code**.

6.3.2 In the course of planning and designing a power system, it is often necessary for the **DNO** to model a small section of the wider system in detail. This could be an embedded system at 33 kV or less, which is connected to the **Transmission System** (275/110 kV) via one or more step-down transformers.
6.3.3 For Power Generating Facilities connected at HV, it is generally necessary to build an equivalent model of the Distribution Network. An example is shown as Figure 6.8 below.

![Figure 6.8 Example equivalent Total System representation](image)

This model will typically include equivalent source representing existing Power Generating Modules fault level arising from asynchronous plant (EREC G74), interconnection impedances, loads, and possibly the Generator’s proposal for reactive compensation plant. The parameters of these elements will depend upon the selection of the boundary nodes between the equivalent and detailed networks in the model.

6.3.4 It may be beneficial to model some of the ‘active’ elements in full detail. Supergrid, grid, primary and other transformers can be considered active for the purpose of determining voltage control limits. Knowledge of the voltage control set points, transformer tap changer deadbands, and control methods is often essential. Also a knowledge of which items of Power Generating Modules are mainly responsible for the range of fault contributions offered at the Connection Point by the DNO is a useful addition. Fault contribution may also arise from other rotating plant – shown here as an equivalent asynchronous motor (EREC G74).

6.3.5 This equivalent Total System model will not accurately represent the fast dynamic (sub second) behaviour of the active elements within the Distribution Network and Transmission System.

6.3.6 Control systems for Synchronous Power Generating Modules and prime movers have traditionally been provided and modelled in transparent transfer-function block diagram form. These models have been developed over many years and include lead/lag elements, gains, limiters and non-linear elements and may be tuned to obtain a satisfactory response for the particular Power Generating Module and grid connection. Such models will still generally satisfy the present requirements.
6.3.7 This document includes the requirement to submit validated detailed models in respect of asynchronous **Power Generating Modules** which are aggregated into a **Power Park Module**.

6.3.8 Where the DNO deems it necessary to ensure **System Stability** and security validated detailed models of the **Power Generating Module** are required. The **Distribution Code**, Planning Code accepts models of all types of **Power Generating Modules**.

6.3.9 The DNO will need appropriate modelling data from **Power Generating Module Manufacturers** to undertake system analysis. Note that it is the **Generator**'s responsibility to ensure the necessary information is submitted to the DNO.

6.3.9.1 Simulations studies are required for **Type B, Type C and Type D Power Generating Modules** as explained in Annex B.4.

6.3.9.2 **Generators** with **Type B Power Generating Modules** will need to submit appropriate modelling information. The traditional approach outlined in 6.3.6 will be appropriate for **Type B Power Generating Modules**.

6.3.9.3 **Generators** with **Type C and Type D Power Generation Modules** will need to submit appropriate simulation models of the **Power Generating Module**. The model will normally be requested in a compiled form suitable for use with the particular variety of power system analysis software used by the DNO or the TSO. Recently there is a move by **Manufacturers** to create 'black-box' models of their **Power Generating Modules**. These are programmed for compatibility with industry standard power analysis modelling packages. This is in order to protect the Manufacturer's intellectual property and so lessen the need for confidentiality agreements between parties. There are potential advantages and disadvantages to this approach, but must be generally welcomed provided that the two main disadvantages of this approach, as described below, can be resolved:

a) The model shall not be software ‘version’ specific ie will work in all future versions, or has an assurance of future upgrades for a particular software package;

b) The **Manufacturer** shall provide assurance that the black box model correctly represents the performance of the **Power Generating Module** for load flow, fault level and transient analysis for the typical range of faults experienced by the DNO.
6.4 Provision of Information

6.4.1 General

6.4.1.1 Power Generating Facilities can have a significant effect on the DNO’s Distribution Network and as a result its Customers. To enable the DNO to assess the impact embedded Power Generating Modules will have on the DNO’s Distribution Network, the Generator will be required to supply information to the DNO.

6.4.1.2 Except for Fully Type Tested Type A Power Generating Modules (including Integrated Micro Generation and Storage installations), Generators shall provide the following minimum information to the DNO during the connection application process or otherwise as requested by the DNO:-

Relevant Sections:

<table>
<thead>
<tr>
<th>Planning Code Appendix A</th>
<th>Standard Planning Data requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Code Appendix B</td>
<td>Detailed Planning Data requirements</td>
</tr>
</tbody>
</table>

6.4.1.3 When applying for connection to the DNO’s Distribution Network Generators shall also refer to the Distribution Code Planning Code. For Planning Code purposes, planning data supplied by Generators is allocated a status level; preliminary, committed and registered as detailed in Section 8 of the Planning Code.

6.4.1.4 The DNO will use the information provided to model the DNO’s Distribution Network and to decide what method of connection will need to be employed and the voltage level to which the connection should be made. If the DNO reasonably concludes that the nature of the proposed connection or changes to an existing connection requires more detailed consideration then further information may be requested. It is unlikely that more information than that specified in the Distribution Code, Planning Code Appendix A will be required for Power Generating Facilities which are to be connected at Low Voltage and have a Registered Capacity of less than 11 kVA, or connected at other than Low Voltage and have a Registered Capacity of less than 50 kVA.

6.4.2 Information Required for all Type A, Type B, Type C and Type D Power Generating Facilities

It will be necessary for each Generator to provide to the DNO information on physical and electrical characteristics of the Power Generating Facility and site as a whole as set out in the Distribution Code, Planning Code, before entering into an agreement to connect any Power Generating Module onto the DNO’s Distribution Network.
The information required includes:

(a) Details of the proposed **Connection Point** (geographical and electrical) and connection voltage.

(b) The number and types of **Power Generating Modules** and the total capacity of the **Power Generating Facility** and auxiliary supplies under various operating conditions.

(c) Sketches of system layout:

Operation Diagrams showing the electrical circuitry of the existing and proposed main features within the **Generator's Installation** and showing as appropriate busbar arrangements, phasing arrangements, earthing arrangements, switching facilities and operating voltages.

(d) Interface Arrangements:

(i) The means of synchronisation between the **DNO** and **Generator**;

(ii) Details of arrangements for connecting with earth that part of the **Generator** system directly connected to the **DNO's Distribution Network**.

(iii) The means of connection and disconnection which are to be employed.

(iv) Precautions to be taken to ensure the continuance of safe conditions should any earthed neutral point of the **Power Generating Facility**'s system operated at **HV** become disconnected from earth.

More detailed information than that contained above might need to be provided, subject to the type and size of **Power Generating Module** or the point at which connection is to be made to the **DNO’s Distribution Network**. This information will need to be provided by the **Generator** at the reasonable request of the **DNO**.

6.4.3 **Additional Power Generating Module**, Plant and Equipment Data Required for some **Power Generating Facilities**

6.4.3.1 The **Standard Planning Data** and **Detailed Planning Data** specified in the **Distribution Code**, Planning Code Appendix A and B, may be requested by the **DNO** from the **Generator** before entering into an agreement to connect any **Power Generating Module** onto the **DNO’s Distribution Network**. In practice, this information is usually provided by completing the Standard Application Form (Large Scale Generation Application Part B: Technical Form, For applications ≥ 5 MW), available on the **DNO’s website**.

6.4.3.2 The information specified in Part 2 of the Standard Application Form includes generic data for all **Power Generating Modules**.
6.4.3.3 The information specified in Part 3 of the Standard Application Form includes the more detailed electrical parameters of individual **Power Generating Modules** and associated plant such as transformers and **Power Factor** correction equipment. The information is required for each of the following categories of **Power Generating Modules**:

(a) **Synchronous Power Generating Modules**

(b) Series converter / **Inverter** connected **Power Generating Modules**

(c) Fixed speed induction **Power Generating Modules**

(d) Doubly fed induction **Power Generating Modules**

(e) **Transformers**

The information specified in Part 4 of the Standard Application Form may be required by the **DNO**.

6.4.4 Extra information to be provided to meet **Grid Code** requirements.

6.4.4.1 **Centrally Dispatched Generating Units** and **Power Park Modules** with a **Registered Capacity** of 5 MW or more shall additionally provide the **TSO** with the data as detailed in the **Grid Code**, Planning Code, Appendix B.

6.4.5 Information Provided by the **DNO** to **Generators**

6.4.5.1 In accordance with Condition 32 of its distribution **Licence** the **DNO** is required to provide a **Statement on Distribution System Capacity** to **Generators** so that they have the opportunity to identify and evaluate opportunities to connect to the **DNO’s Distribution Network** as set out in Section 7 of the Planning Code.
7 Connection Arrangements

7.1 Operating Modes

7.1.1 **Power Generating Modules** may be designed for one of three operating modes. These are termed long-term parallel operation, infrequent short-term parallel operation and switched alternative-only operation. In the case that a **Power Generating Module** is designed to switch between these modes of operation, it shall be designed to comply with the requirements for each mode.

7.1.2 Equipment other than **Generating Units** (e.g. traction loads, lift motors etc) may act as a short term source of energy, and inject electrical energy into the Customer's Installation when they operate in a regenerative mode. In general there will be no need to make any specific design accommodation for such equipment as it is unlikely that they will support any possible power island for a significant length of time. Where such equipment can act as a source of electrical energy for more than a few seconds (say typically 20 s), the DNO will advise the Customer if the Customer's Installation requires any special consideration such as reverse power protection on a case by case basis.

7.2 Long-Term Parallel Operation

7.2.1 This refers to the frequent or long-term operation of **Power Generating Modules** in parallel with the Distribution Network. Unless otherwise stated, all sections in this EREC G99/NI are applicable to this mode of operation.

7.3 Infrequent Short-Term Parallel Operation

7.3.1 This mode of operation typically enables **Power Generating Modules** to operate as a standby to the DNO's supply. A short-term parallel is required to maintain continuity of supply during changeover and to facilitate testing of the **Power Generating Module**.

7.3.2 In this mode of operation, parallel operation of the **Power Generating Module** and the Distribution Network will be infrequent and brief and under such conditions, it is considered acceptable to relax certain design requirements, such as protection requirements, that would be applicable to long-term parallel operation. The provisions of this section 7 should also be read with Annex A.4 which details some other specific exclusions of parts of sections 9 to 12 of this EREC G99/NI.

7.3.3 As the design requirements for a **Power Generating Module** operating in this mode are relaxed compared with those for long-term parallel operation, it is necessary for the DNO to specify a maximum frequency and duration of short-term parallel operation, to manage the risk associated with the relaxed design requirement.

The Power Generating Module may be permitted to operate in parallel with the Distribution Network for no more than 5 minutes in any month, and no more frequently than once per week. If the duration of parallel connection exceeds this period, or this frequency, then the Power Generating Module shall be considered as if it is, or can be, operated in long-term parallel operation mode. An alternative frequency and duration may be agreed between the DNO and the Generator taking account of particular site circumstances and Power Generating Module design. An electrical time interlock should be installed to ensure that the period of parallel operation does not exceed the agreed period. The timer should be a
separate device from the changeover control system such that failure of the auto changeover system will not prevent the parallel being broken.

7.3.4 The following design variations from those in the remainder of this EREC G99/NI are appropriate for infrequent short-term parallel operation:

a) Protection Requirements – Infrequent short-term parallel operation requires only under/over voltage and under/over frequency protection. This protection only needs to be in operation for the time the Power Generating Module is operating in parallel. A specific Loss of Mains (LoM) protection relay is not required, although many multifunction relays now have this function built in as standard. Similarly, additional requirements such as neutral voltage displacement, intertripping and reverse power are not required. This is based on the assumptions that as frequency and duration of paralleling during the year are such that the chance of a genuine LoM event coinciding with the parallel operation is unlikely. However, if a coincidence does occur, consideration shall be given to the possibility of the Power Generating Module supporting an island of Distribution Network as under voltage or under frequency protection is only likely to disconnect the Power Generating Module if the load is greater than the Power Generating Module capacity. Consequently it is appropriate to apply different protection settings for short term parallel connection. As this Power Generating Module will not be expected to provide grid support or contribute to system security, more sensitive settings based on statutory limits would compensate for lack of LoM protection. Ultimately, if an island was established the situation would only persist for the duration of the parallel operation timer setting before generation was tripped.

b) Connection with Earth – It is recommended that the Power Generating Module’s star points or neutrals are permanently connected to earth. In that way, the risks associated with switching are minimized and the undesirable effects of circulating currents and harmonics will be tolerable for the timescales associated with short-term paralleling.

c) Fault Level – There is the need to consider the effect of the Power Generating Module’s contribution to fault level. The risks associated with any overstressing during the short term paralleling will need to be individually assessed and the process for controlling this risk agreed with the DNO.

d) Voltage rise / Step Voltage Change - Connections should be designed such that the operation of a Power Generating Module does not produce voltage rise at the Connection Point in excess of statutory limits. In general this should not be an issue with most Short-Term Parallel Operation as at the time of synchronising with the mains most sites will normally be generating only sufficient output to match the site load. Therefore the power transfer on synchronising should be small, with the Power Generating Module ramping down to transfer site load to the mains. If the Power Generating Module tripped at this point it could introduce a larger Step Voltage Change than would normally be acceptable for loss of Power Generating Module operating under a long-term parallel arrangement but in this event it could be regarded as an infrequent event and a step change of up to 10% as explained in Section 9.3 would be acceptable.
e) Out-of-phase capabilities - All newly installed switchgear should be specified for the duty it is to undertake. Where existing switchgear which might not have this capability is affected by short-term paralleling it is expected that it will not be warranted to replace it with switchgear specifically tested for out-of-phase duties, although the owner of each circuit breaker should specifically assess this. Clearly the synchronizing circuit breaker (owned by the Generator) shall have this certified capability. For the avoidance of doubt it is a requirement of the Electricity at Work Regulations that “no electrical equipment shall be put into use where its strength and capability may be exceeded in such a way as may give rise to danger.” Section 9.7 below provides more information on the assessment of such situations.

7.3.5 Some Manufacturers have developed fast acting automatic transfer switches. These are devices that only make a parallel connection for a very short period of time, typically 100 – 200 ms. Under these conditions installing conventional Interface Protection with an operating time of 500 ms is not appropriate when the parallel will normally be broken before the protection has a chance to operate. There is however the risk that the device will fail to operate correctly and therefore a timer should be installed to operate a conventional circuit breaker if the parallel remains on for more than 1 s. The switch should be inhibited from making a transfer to the DNO’s Distribution Network whilst voltage and frequency are outside expected limits.

7.4 Switched Alternative-Only Operation

7.4.1 General

7.4.1.1 Under this mode of operation it is not permissible to operate a Power Generating Module in parallel with the Distribution Network. Regulation 22 of the ESQCR (NI) states that it is the Generator’s responsibility to ensure that all parts of the Power Generating Module have been disconnected from the Distribution Network and remain disconnected while the Power Generating Module is operational. The provisions of this EREC do not generally apply and the earthing, protection, instrumentation etc. for this mode of operation are the responsibility of the Generator, however, where such a Power Generating Module is to be installed, the DNO shall be given the opportunity to inspect the equipment and witness commissioning of any changeover equipment and interlocking.

7.4.1.2 The changeover devices shall be of a ‘fail-safe’ design so that one circuit controller cannot be closed if the other circuit controller in the changeover sequence is closed, even if the auxiliary supply to any electro-mechanical devices has failed. Changeover methods involving transfer of removable fuses or those having no integral means of preventing parallel connection with the Distribution Network are not acceptable. The equipment shall not be installed in a manner which interferes with the DNO’s cut-out, fusegear or circuit breaker installation, at the supply terminals or with any metering equipment.

7.4.1.3 The direct operation of circuit-breakers or contactors shall not result in the defeat of the interlocking system. For example, if a circuit-breaker can be closed mechanically, regardless of the state of any electrical interlocking, then it shall have mechanical interlocking in addition to electrical interlocking. Where an automatic mains fail type of Power Generating Module is installed, a conspicuous warning notice should be displayed and securely fixed at the Connection Point.
7.4.1.4 The **Power Generating Facility** shall use an earth electrode independent from the **Distribution Network**.

7.4.2 Changeover Operated at HV

7.4.2.1 Where the changeover operates at HV, the following provisions may be considered by the **Generator** to meet the requirements of Regulation 22 of the **ESQCR (NI)**:

(a) An electrical interlock between the closing and tripping circuits of the changeover circuit breakers;

(b) A mechanical interlock between the operating mechanisms of the changeover circuit breakers;

(c) An electro-mechanical interlock in the mechanisms and in the control circuit of the changeover circuit breakers;

(d) Two separate contactors which are both mechanically and electrically interlocked.

Electrically operated interlocking should meet the requirements of BS EN 61508.

7.4.2.2 Although any one method may be considered to meet the minimum requirement, it is recommended that two methods of interlocking are used wherever possible. The **Generator** shall be satisfied that any arrangement will be sufficient to fulfil the **Generator**’s obligations under the **ESQCR (NI)**.

7.4.3 Changeover Operated at LV

7.4.3.1 Where the changeover operates at LV, the following provisions may be considered by the **Generator** to meet the requirements of Regulation 22 of the **ESQCR (NI)**:

(a) Manual break-before-make changeover switch;

(b) Separate switches or fuse switches mechanically interlocked so that it is impossible for one to be moved when the other is in the closed position;

(c) An automatic break-before-make changeover contactor;

(d) Two separate contactors which are both mechanically and electrically interlocked;

(e) A system of locks with a single transferable key.

Electrically operated interlocking should meet the requirements of BS EN 61508.

7.4.3.2 The **Generator** shall be satisfied that any arrangement will be sufficient to fulfill the **Generator**’s obligations under the **ESQCR (NI)**.

7.4.3.3 The switchgear that is used to separate the two systems shall break all four poles (3 phases and neutral). This prevents any phase or neutral current, produced by the **Power Generating Facility**, from flowing into the DNO’s **Distribution Network** when it operates as a switched alternative only supply.
7.5 Phase Balance of Type A Power Generating Module output at LV

7.5.1 Connection of single phase Power Generating Modules may require Distribution Network reinforcement and extension before commissioning for technical reasons (such as voltage issues and unacceptable phase imbalance) depending on the point of connection and Distribution Network design.

7.5.2 A solution to these voltage issues and phase imbalance issues may be to utilise 3-phase Power Generating Modules or to use multiple single phase Power Generating Modules connected across three phases. For this arrangement the same export power will result in lower voltage rises due to decreased line currents and a three phase connected Power Generating Module is likely to result in significantly lower voltage rises than those created by a single phase connected Power Generating Module. If the individual Power Generating Modules have different ratings, current and voltage imbalance may occur. To maintain current and voltage imbalance within limits the Generator shall consider the phase that each Power Generating Module is connected to in an installation. In addition the DNO may define to a Generator the phases to which the Power Generating Modules in any given installation should be connected.

7.5.3 Where single phase Power Generating Modules are being used the Generator should design the installation on a maximum unbalance output of 16 A between the highest and lowest phase. Where there are a mixture of different technologies, or technologies which may be operational at different times (eg wind and solar) Power Generating Modules shall be connected to give a total imbalance of less than 16 A based on assumed worst case conditions, those being:

(a) One Power Generating Module at maximum output with the other(s) at zero output – all combinations to be considered.

(b) Both / all Power Generating Modules being at maximum output.

A Power Generating Module technology which operates at different times due to location eg east and west facing roofs for PV, shall allow for the PV on one roof to be at full output and the PV on the other roof to be at zero output.

7.5.4 In order to illustrate this requirement examples of acceptable and unacceptable connections have been given in Annex A.5.

7.6 Type A Power Generating Module capacity for single LV phase supplies

7.6.1 The maximum aggregate capacity of Power Generating Modules that can be connected to a single phase supply is 17 kW.

7.6.2 There is no requirement to provide intertripping between single phase Inverters where these are installed on multi-phase supplies up to a limit of 17 kW per phase (subject to balance of site output as per Section 7.5). A single phase 17 kW connection may result in an imbalance of up to 17 kW following a Distribution Network or Power Generating Module outage. However the connection design should result in imbalance under normal operation to be below 16 A between phases as noted above.

7.6.3 Power Generating Facilities with a capacity above 17 kW per phase are expected to comprise three phase units. The requirement to disconnect all phases following a fault in the Generator's Installation or a Distribution Network outage applies to three phase Power Generating Modules only and will be tested as part
of the compliance testing of the Power Generating Module. In some parts of the country where provision of three phase networks is costly then the DNO may be able to provide a solution using single or split phase networks for Power Generating Facilities above the normal limits as set out above.

7.7 Voltage Management Units in Generator’s Installation

7.7.1 Voltage Management Units are becoming more popular and use various methods, in most cases, to reduce the voltage supplied from the DNO’s Distribution Network before it is used by the Generator. In some cases where the DNO’s Distribution Network voltage is low they may increase the voltage supplied to the Generator. Some technologies are only designed to reduce voltage and cannot increase the voltage.

7.7.2 The use of such equipment has the advantage to the Generator of running appliances at a lower voltage and in some cases this can reduce the energy consumption of the appliance. Some appliances when running at a lower voltage will result in higher current consumption as the device needs to take the same amount of energy from the system to carry out its task.

7.7.3 If a Voltage Management Unit is installed between the Connection Point and the Power Generating Module in a Generator’s Installation, it may result in the voltage at the Generator side of the Voltage Management Unit remaining within the limits of the protection settings defined in Table 10.1 while the voltage at the Connection Point side of the unit might be outside the limits of the protection settings. This would negate the effect of the protection settings. Therefore, this connection arrangement is not acceptable and all Power Generating Modules connected to the DNO’s LV Distribution Network under this Engineering Recommendation shall be made on the Connection Point side of any Voltage Management Unit installed in a Generator’s Installation.

7.7.4 Generators should note that the overvoltage setting defined in Table 10.1 is 10% above the maximum voltage allowed for the voltage from the DNO’s Distribution Network under the ESQCR (NI) and that provided they have designed their installation correctly there should be very little nuisance tripping of the Power Generating Module. Frequent nuisance tripping of a Power Generating Module may be due to a fault in the Generator’s Installation or the operation of the DNO’s Distribution Network at too high a voltage. Generators should satisfy themselves that their installation has been designed correctly and all Power Generating Modules are operating correctly before contacting the DNO if nuisance tripping continues. Under no circumstances should they resort to the use of Voltage Management Units installed between the Connection Point and the Power Generating Module.
8 Earthing

8.1 General

8.1.1 The earthing arrangements of the Power Generating Module shall satisfy the requirements of this EREC G99/NI.

8.1.2 The winding configuration and method of earthing of Power Generating Modules and associated Generator Transformers shall be agreed with the DNO or, if agreement cannot be reached, determined by the DNO.

8.2 Power Generating Modules with a Connection Point at HV

8.2.1 HV Distribution Networks may use direct, resistor, reactor or arc suppression coil methods of earthing the Distribution Network neutral. The magnitude and duration of fault current and voltage displacement during earth faults depend on which of these methods is used. The method of earthing therefore has an impact on the design and rating of earth electrode systems and the rating of plant and equipment.

8.2.2 To ensure compatibility with the earthing on the Distribution Network the earthing arrangements of the Power Generating Module shall be designed in consultation and formally agreed with the DNO. The actual earthing arrangements will also be dependent on the number of Power Generating Modules in use and the Generators system configuration and method of operation. The system earth connection shall have adequate electrical and mechanical capability for the duty.

8.2.3 HV Distribution Networks operating at voltages below 110 kV are generally designed for earthing at one point only and it is not normally acceptable for HV Generators to connect additional HV earths when operating in parallel. One common exception to this rule is where the Power Generating Module uses an HV voltage transformer (VT) for protection, voltage control or instrumentation purposes and this VT requires an HV earth connection to function correctly.

8.2.4 Not used.

8.2.5 In some cases the DNO may allow the Generator to earth the Generator's HV system when operating in parallel with the Distribution Network. The details of any such arrangements shall be agreed in writing between the relevant parties.

8.2.6 Generators shall take adequate precautions to ensure their Power Generating Module is connected to earth via their own earth electrodes when operating in isolation from the Distribution Network.

8.2.7 Typical earthing arrangements are given in Figures 8.1 to 8.4.

8.2.8 Earthing systems shall be designed, installed, tested and maintained in accordance with ENA TS 41-24, (Guidelines for the design, installation, testing and maintenance of main earthing systems in substations), BS7354 (Code of Practice for Design of Open Terminal Stations), BS7430 (Code of Practice for Earthing) and Engineering Recommendation S.34 (A guide for assessing the rise of earth potential at substation sites). Precautions shall be taken to ensure hazardous step and touch potential do not arise when earth faults occur on HV systems. Where necessary, HV earth electrodes and LV earth electrodes shall be adequately segregated to prevent hazardous earth potentials being transferred into the LV Distribution Network.
NOTE:
(1) Interlocking between the busbar CB and the Power Generating Facility CB is required to prevent parallel operation of the Power Generating Module and DNO’s Distribution Network

Figure 8.1 - Typical Earthing Arrangement for an HV Power Generating Module Designed for Independent Operation (ie Standby Operation) Only
NOTE:
(1) Power Generating Module winding is not connected to earth irrespective of whether it is star or delta connected

Figure 8.2 - Typical Earthing Arrangement for a HV Power Generating Module Designed for Parallel Operation Only
NOTE:

(1) Protection, interlocking and control systems are designed to ensure that the busbar CB is open when the Power Generating Module operates independently from the DNO’s Distribution Network.

(2) When the Power Generating Module operates independently from the DNO’s Distribution Network (ie the busbar CB is open) the neutral / earth switch is closed.

(3) When the Power Generating Module operates in parallel with the DNO’s Distribution Network (ie the busbar CB is closed) the neutral / earth switch is open.

Figure 8.3 - Typical Earthing Arrangement for an HV Power Generating Module Designed for both Independent Operation (ie Standby Operation) and Parallel Operation.
NOTE:

(1) Protection, interlocking and control systems are designed to ensure that the busbar CB is open when the Power Generating Modules operate independently from the DNO’s Distribution Network.

(2) If one Power Generating Module is operating independently from the DNO’s Distribution Network (ie the busbar CB is open) then its neutral switch is closed and the neutral / earth switch is closed.

(3) If both Power Generating Modules are operating independently from the DNO’s Distribution Network (ie the busbar CB is open) then one neutral switch is closed and the neutral / earth switch is closed.

(4) If one or both of the Power Generating Modules are operating in parallel with the DNO’s Distribution Network (ie the busbar CB is closed) then both neutral switches and the neutral /earth switch are open.

Figure 8.4 - Typical Earthing Arrangement for two HV Power Generating Modules Designed for both Independent Operation (ie Standby Operation) and Parallel Operation
8.3 Power Generating Modules with a Connection Point at LV

8.3.1 LV Distribution Networks are always solidly earthed, and the majority are multiple earthed. Design practice for protective multiple earthing is detailed in the Energy Networks Association publications including Engineering Recommendation G12, and in the references contained in those publications.

8.3.2 The winding configuration and method of earthing connection shall be agreed with the DNO.

8.3.3 In addition, where the Power Generating Facility’s Connection Point is at LV the following shall apply:

Where an earthing terminal is provided by the DNO it may be used by a Power Generation Facility for earthing the Power Generating Module, provided the DNO earth connection is of adequate capacity. If the Power Generating Module is intended to operate independently of the DNO’s supply, the Power Generating Module shall include an earthing system which does not rely upon the DNO’s earthing terminal. Where use of the DNO’s earthing terminal is retained, it shall be connected to the Power Generating Modules earthing system by means of a conductor at least equivalent in size to that required to connect the DNO’s earthing terminal to the installation.

Where the Power Generating Module may be operated as a switched alternative only to the DNO’s Distribution Network, the Power Generation Facility shall provide an independent earth electrode.

Where it is intended to operate in parallel with the DNO’s Low Voltage Network with the star point connected to the neutral and/or earthing system, precautions will need to be taken to limit the effects of circulating harmonic currents. It is permissible to insert an impedance in the supply neutral of the Power Generating Module for this purpose, for those periods when it is paralleled with the DNO’s Distribution Network. However, if the Power Generating Module is operating in isolation from the DNO’s Distribution Network it will be necessary to have the Power Generating Module directly earthed.

Where the Power Generating Modules are designed to operate independently from the DNO’s Distribution Network the switchgear that is used to separate the two systems shall break all four poles (3 phases and neutral). This prevents any phase or neutral current, produced by the Power Generating Module, from flowing into the DNO’s Distribution Network when it operates as a switched alternative only supply.

8.3.4 The following Figures 8.5 to 8.9 show typical installations.
NOTE:
(1) HV earthing is not shown.
(2) Protection, interlocking and control systems are designed to ensure that the busbar CB is open when the Power Generating Module operates independently from the DNO's Distribution Network.
(3) When the Power Generating Module operates independently from the DNO's Distribution Network (ie the busbar CB is open) the neutral earth switch is closed.
(4) When the Power Generating Module operates in parallel with the DNO's Distribution Network (ie the busbar CB is closed) the neutral / earth switch is open.

Figure 8.5 - Typical Earthing Arrangement for an LV Power Generating Module Connected to the DNO's Distribution Network at HV and Designed for both Independent Operation (ie Standby Operation) and Parallel Operation.
NOTE:
(1) HV earthing is not shown.
(2) Protection, interlocking and control systems are designed to ensure that the busbar CB is open when the **Power Generating Module** operates independently from the **DNO’s Distribution Network**.
(3) When the **Power Generating Module** operates independently from the **DNO’s Distribution Network** (i.e., the busbar CB is open) the neutral / earth switch is closed.
(4) When the **Power Generating Module** operates in parallel with the **DNO’s Distribution Network** (i.e., the busbar CB is closed) the neutral / earth switch is open.

Figure 8.6 - Typical Earthing Arrangement for an LV Power Generating Module Embedded within a Generator HV System and Designed for both Independent Operation (i.e Standby Operation) and Parallel Operation
NOTE

(1) Only one phase of a three phase system is shown to aid clarity.

(2) The Power Generating Module is not designed to operate in parallel with the DNO’s Distribution Network.

(3) The DNO cut-out / circuit breaker shows a PME (TN-C-S) connection, however, the Power Generating Module earthing arrangement is also applicable to SNE (TNS) and direct earthing (TT) arrangements.

(4) The changeover switch shall disconnect each phase and the neutral (ie for a three phase system a 4 pole switch is required). This prevents Power Generating Module neutral current from inadvertently flowing through the part of the Generator’s Installation that is not supported by the Power Generating Module.

Figure 8.7 - Typical Earthing Arrangement for an LV Power Generating Module Embedded within a Generator LV System and Designed for Independent (ie Standby) Operation Only
NOTE:
(1) Only one phase of the three phase system is shown to aid clarity.
(2) The Power Generating Module is not designed to operate in standby mode.
(3) The DNO cut-out / circuit breaker shows a PME (TN-C-S) connection, however, the Power Generating Module earthing arrangement is also applicable to SNE (TNS) and direct earthing (TT) arrangements.
(4) The Generator’s independent earth electrode is only required if the installation is Directly Earthed (TT).

Figure 8.8 - Typical Earthing Arrangement for an LV Power Generating Module Embedded within a Generator LV System and Designed for Parallel Operation Only
NOTE:
(1) Only one phase of a three phase system is shown to aid clarity.
(2) The DNO cut-out / circuit breaker shows a PME (TN-C-S) connection, however, the Power Generating Module earthing arrangement is also applicable to SNE (TNS) and direct earthing (TT) arrangements.
(3) When the Power Generating Module operates independently from the DNO’s Distribution Network, the switch that is used to isolate between these two systems shall disconnect each phase and neutral (ie for a three phase system a 4 pole switch is required). This prevents Power Generating Module neutral current from inadvertently flowing through the part of the Generator’s Installation that is not supported by the Power Generating Module. This switch should also close the Power Generating Module neutral and earth switches during independent operation.

Figure 8.9 - Typical Earthing Arrangement for an LV Power Generating Module Embedded within a Generator LV System and Designed for both Independent Operation (ie Standby Operation) and Parallel Operation.
9 Network Connection Design and Operation

9.1 General Criteria

9.1.1 As outlined in Section 5, the DNO has to meet certain statutory and distribution Licence obligations when designing and operating their Distribution Network. These obligations will influence the options for connecting Power Generating Modules.

9.1.2 The technical and design criteria to be applied in the design of the Distribution Network and Power Generating Module connection are detailed in this document and the Connection Conditions of the Distribution Code. The criteria are based upon the performance requirements of the Distribution Network necessary to meet the above obligations.

9.1.3 The Distribution Network, and any Power Generating Module connection to that network, shall be designed:

(a) to comply with the obligations (to include security, frequency and voltage; voltage disturbances and harmonic distortion; auto reclosing and single phase protection operation).

(b) according to design principles in relation to Distribution Network’s plant and equipment, earthing, voltage regulation and control, and protection as outlined in Section 6 of the Connection Conditions of the Distribution Code, subject to any Modification to which the DNO may reasonably consent.

9.1.4 Power Generating Modules should meet a set of technical requirements in relation to its performance with respect to frequency and voltage, control capabilities, protection coordination requirements, Phase (Voltage) Unbalance requirements, neutral earthing provisions, islanding and Black Start capability as applicable. The technical connection requirements in this chapter are common to all Power Generating Modules.

9.1.5 In addition requirements for Type A Power Generating Modules are detailed in Section 11. Requirements for Type B Power Generating Modules are detailed in Section 12. Requirements for Type C and Type D Power Generating Modules are detailed in Section 13.

9.2 Network Connection Design for Power Generating Modules

9.2.1 The connection of new Customers, including Generators, to the Distribution Network should not generally increase the risk of interruption to existing Customers. For example, alterations to existing Distribution Network designs that cause hitherto normally closed circuits to have to run on open standby such that other Customers might become disconnected for the duration of the auto-switching times are deprecated.

9.2.2 Not used.
9.2.3 The security requirements for the connection of Power Generating Modules are subject to economic consideration by the DNO and the Generator. A firm connection for a Power Generating Module should allow the full export at the Registered Capacity across the required Power Factor operating range to be exported via the Distribution Network at all times of year and after one outage on any one circuit of the Distribution Network. ETR 124 provides additional advice on the management of constraints and security.

9.2.4 The decision as to whether or not a firm connection is required should be by agreement between the DNO and the Generator. The DNO should be able to provide an indication of the likely duration and magnitude of any constraints so that the Generator can make an informed decision. The Generator should consider the financial implications of a non-firm connection against the cost of a firm connection, associated Distribution Network reinforcement and the risk of any constraints due to Distribution Network restrictions.

9.2.5 Where the DNO expects the Power Generating Module to contribute to system security, the provisions of EREC P2 and the guidance of EREP 130 will apply. In addition, the Power Generating Module should either remain synchronised and in parallel with the Distribution Network under the outage condition being considered or be capable of being resynchronised within the time period specified in EREC P2. There may be commercial issues to consider in addition to the connection cost and this may influence the technical method which is used to achieve a desired security of supply.

9.2.6 When designing a scheme to connect a Power Generating Module, consideration shall be given to the contribution which that Power Generating Module will make to short circuit current flows on the Distribution Network. The assessment of the fault level contribution from a Power Generating Module and the impact on the suitability of connected switchgear are discussed in Section 9.7.

9.2.7 It is clearly important to avoid unwanted tripping of the Power Generating Module particularly where the Power Generating Module is providing Distribution Network or Total System security. The quality of supply and stability of Power Generating Module performance are dealt with in Sections 9.4 and 9.5 respectively.

9.2.8 Power Generating Modules may be connected via existing circuits to which load and/or existing Power Generating Modules are also connected. The duty on such circuits, including load cycle, Active Power and Reactive Power flows, and voltage implications on the Distribution Network will need to be carefully reviewed by the DNO, taking account of maximum and minimum load and generation export conditions during system intact conditions and for maintenance outages of both the Distribution Network and Power Generating Modules. In the event of network limitations, ETR 124 provides guidance to the DNO on overcoming such limitations using active management solutions.

9.2.9 The DNO assessing a proposed connection of a Power Generating Module shall also consider its effects on the Distribution Network voltage profile and voltage control employment on the Distribution Network. Voltage limits and control issues are discussed in Sections 11, 12 and 13 for each Power Generating Module type.

9.2.10 The short circuit ratio for each Power Generating Module shall not be less than 0.5.
9.2.11 Minimum connected impedance

9.2.11.1 For *Synchronous Power Generating Modules* the minimum connected impedance applicable to the *Power Generating Module* and Generator Transformer will be specified in the Connection Agreement. The DNO’s requirements for the impedances will reflect the needs of the Distribution Network from the fault level and stability points of view.

9.2.11.2 For *Power Park Modules* the minimum connected impedance applicable to the *Power Park Module* will be specified in the Connection Agreement. The DNO’s requirements for the impedance will reflect the needs of the Distribution Network from the fault level and stability points of view.

9.3 Step Voltage Change and Rapid Voltage Change

9.3.1 The Step Voltage Change and Rapid Voltage Change caused by the connection and disconnection of Power Generating Modules from the Distribution Network shall be considered and be subject to limits to avoid unacceptable voltage changes being experienced by other Customers connected to the Distribution Network. The magnitude of a Step Voltage Change depends on the method of voltage control, types of load connected and the presence of local generation.

9.3.2 Limits for Step Voltage Change and Rapid Voltage Change caused by the connection and disconnection of any Customers equipment to the Distribution Network should be within the limits set out in EREC P28.

9.3.3 The voltage depression arising from transformer magnetising inrush current is a short-time phenomenon captured by considerations of Rapid Voltage Change. In addition the size of the depression is dependent on the point on wave of switching and the duration of the depression is relatively short in that the voltage recovers substantially in less than 1 s.

9.3.4 **Generator’s Installations** shall be designed taking account of the advice in EREC P28 in respect of transformer energisation assessment such that transformer magnetising inrush current associated with normal routine switching operations does not cause voltage fluctuations outside those in EREC P28. To achieve this it may be necessary to install switchgear so that sites containing multiple transformers can be energised in stages.

9.3.5 These threshold limits shall be complied with at the Point of Common Coupling as required by EREC P28.

9.4 Power Quality

9.4.1 Introduction

9.4.1.1 The connection and operation of Power Generating Modules may cause Phase (Voltage) Unbalance and/or a distortion of the Distribution Network voltage waveform resulting in voltage fluctuations and harmonics.

9.4.2 Flicker

9.4.2.1 Where the input motive power of the Power Generating Module may vary rapidly, causing corresponding changes in the output power, flicker may result. The operation of a Power Generating Module including synchronisation, run-up and desynchronisation shall not result in flicker that breaches the limits for flicker that is non-compliant with EREC P28.
9.4.2.2 The supply impedance of the Distribution Network needs to be considered to ensure that the emissions produced by the Power Generating Module do not cause a problem on the Distribution Network.

9.4.2.3 For Power Generating Modules up to 17 kW per phase or 50 kW three phase voltage step change and flicker measurements as required by BS EN 61000-3-11 shall be made and recorded in the test declaration form A2-1 or form A2-3 (Annex A.2) as applicable for the Power Generating Module. The DNO will use these declared figures to calculate the required maximum supply impedance required for the connection to comply with EREC P28. This calculation may show that the voltage fluctuations will be greater than those permitted and hence reinforcement of the Distribution Network may be required before the Power Generating Module can be connected. Detailed testing requirements are described in Annex A.7.

9.4.3 Harmonic Emissions

9.4.3.1 Harmonic currents produced within the Generator's Installation and modification of the harmonic impedance caused by the addition of the Generator's installation may cause excessive harmonic voltage distortion in the Distribution Network. The Generator's Installation shall be designed and operated to comply with the planning criteria for harmonic voltage distortion as specified in EREC G5. EREC G5, like all planning standards referenced in this recommendation, is applicable at the time of connection of additional equipment to a Generator's Installation.

9.4.3.2 For Power Generating Modules of up to 17 kW per phase or 50 kW three phase harmonic measurements as required by BS EN 61000-3-12 shall be made and recorded in the test declaration form A2-1 or form A2-3 (Annex A.2) as applicable for the Power Generating Module. The DNO will use these declared figures to calculate the required maximum supply impedance required for the connection to comply with BS EN 61000-3-12 and will use this data in its design of the connection for the Power Generating Module. This standard requires a minimum ratio between source fault level and the size of the Power Generating Module, and connections in some cases may require the installation of a transformer between 2 and 4 times the rating of the Power Generating Module in order to accept the connection to a DNO’s Distribution Network. Detailed testing requirements are described in Annex A.7.

9.4.3.3 Where the Power Generating Module is connected via a long cable circuit the likelihood of a resonant condition is greatly increased. This arises from the reaction of the transformer inductance with the cable capacitance. Resonance is likely in the low multiples of the fundamental frequency (8th-11th harmonic). The resonant frequency is also a function of the Total System fault level. If there is the possibility that this can change significantly eg by the connection of another Power Generating Module then a full harmonic study should be carried out.
9.4.4 Voltage imbalance

9.4.4.1 EREC P29 is a planning standard which provides limits for voltage unbalance caused by uneven loading of three phase supply systems. Power Generating Modules should be capable of performing satisfactorily under the conditions EREC P29 defines. The existing voltage unbalance on an urban Distribution Network rarely exceeds 0.5% but higher levels, in excess of 1%, may be experienced at times of high load and when outages occur at voltage levels above 11 kV. 1% may exist continuously due to unbalance of the system impedance (common on remote rural networks). In addition, account can be taken of the neutralising effect of rotating plant, particularly at 11 kV and below. BS EN 50160 contains details of the variations and disturbances to the voltage which shall be taken into account in selecting equipment of an appropriate specification for installation on or connected to the Distribution Network.

9.4.4.2 The level of voltage unbalance at the Point Of Common Coupling should be no greater than 1.3% for systems with a nominal voltage below 33 kV, or 1% for other systems with a nominal voltage no greater than 132 kV. Overall, voltage unbalance should not exceed 2% when assessed over any one minute period. EREC P29, like all planning standards, is applicable at the time of connection.

9.4.4.3 For Power Generating Facilities of 50 kW or less Section 7.5 of this document specifies maximum unbalance of Power Generating Modules. Where these requirements are met then no further action is required by the Generator.

9.4.5 Power Factor correction equipment is sometimes used with Power Park Modules to decrease Reactive Power flows on the Distribution Network. Where the Power Factor correction equipment is of a fixed output, stable operating conditions in the event of loss of the DNO supply are extremely unlikely to be maintained, and therefore no special protective actions are required in addition to the standard protection specified in this document.

9.4.6 DC Injection

9.4.6.1 The effects of, and therefore limits for, DC currents injected into the Distribution Network is an area currently under investigation. Until these investigations are concluded the limit for DC injection is less than 0.25% of the AC rating per Power Generating Module.

9.4.6.2 The main source of these emissions are from transformer-less Inverters. Where necessary DC emission requirements can be satisfied by installing a transformer on the AC side of an Inverter.

9.5 System Stability

9.5.1 Instability in Distribution Networks may result in unacceptable quality of supply and tripping of Generator's plant. In severe cases, instability may cascade across the Distribution Network, resulting in widespread tripping and loss of demand and generation. There is also a risk of damage to plant.

9.5.2 In general, System Stability is an important consideration in the design of Power Generating Module connections to the Distribution Network at 33 kV and above. Stability considerations may also be appropriate for some Power Generating Module connections at lower voltages. The risks of instability generally increase as Power Generating Module capacity increases relative to the fault level infeed from the Distribution Network at the Connection Point.
9.5.3 **System Stability** may be classified into several forms, according firstly to the main system variable in which instability can be observed, and secondly to the size of the system disturbance. In **Distribution Networks**, the forms of stability of interest are rotor angle stability and voltage stability.

9.5.3.1 Rotor angle stability refers to the ability of synchronous machines in an interconnected system to remain in **Synchronism** after the system is subjected to a disturbance.

9.5.3.2 Voltage stability refers to the ability of a system to maintain acceptable voltages throughout the system after being subjected to a disturbance.

9.5.3.3 Both rotor angle stability and voltage stability can be further classified according to the size of the disturbance.

9.5.3.4 Small-disturbance stability refers to the ability of a system to maintain stability after being subjected to small disturbances such as small changes in load, operating points of **Power Generating Modules**, transformer tap-changing or other normal switching events.

9.5.3.5 Large-disturbance stability refers to the ability of a system to maintain stability after being subjected to large disturbances such as short-circuit faults or sudden loss of circuits or **Power Generating Modules**.

9.5.3.6 Traditionally, large-disturbance rotor angle stability (also referred to as transient stability) has been the form of stability predominantly of interest in **Distribution Networks** with synchronous machines. However, it should be noted that the other forms of stability may also be important and may require consideration in some cases.

9.5.4 It is recommended that a **Power Generating Module** and its connection to the **Distribution Network** be designed to maintain stability of the **Distribution Network** for a defined range of initial operating conditions and a defined set of system disturbances.

9.5.4.1 The range of initial operating conditions should be based on those which are reasonably likely to occur over a year of operation. Variables to consider include system loads, system voltages, system outages and configurations, and **Power Generating Module** operating conditions.

9.5.4.2 The system disturbances for which stability should be maintained should be selected on the basis that they have a reasonably high probability of occurrence. It is recommended that these include short-circuit faults on single **Distribution Network** circuits (such as transformers, overhead lines and cables) and busbars, that are quickly cleared by main protection.
9.5.5 With the system in its normal operating state, it is desirable that all Power Generation Modules remain connected and stable for any of the following credible fault outages:

(a) any one single circuit overhead line, transformer feeder or cable circuit, independent of length,

(b) any one transformer or reactor,

(c) any single section of busbar at or nearest the point of connection where busbar protection with a total clearance time of less than 200ms is installed,

(d) if demand is to be secured under a second circuit outage as required by EREC P2, fault outages (a) or (b), overlapping with any pre-existing first circuit outage, usually for maintenance purposes. In this case the combination of circuit outages considered should be that causing the most onerous conditions for System Stability, taking account of the slowest combination of main protection, circuit breaker operating times and strength of the connections to the system remaining after the faulty circuit or circuits have been disconnected.

9.5.6 It should be noted that it is impractical and uneconomical to design for stability in all circumstances. This may include double circuit fault outages and faults that are cleared by slow protection. Power Generating Modules that become unstable following system disturbances shall be disconnected as soon as possible to reduce the risk of plant damage and disturbance to the system.

9.5.7 Various measures may be used, where reasonably practicable, to prevent or mitigate system instability. These may include Distribution Network and Power Generating Module solutions, such as:

(a) improved fault clearance times by means of faster protection;

(b) improved performance of Power Generating Module control systems (excitation and governor/prime mover control systems; Power System Stabilisers to improve damping);

(c) improved system voltage support (provision from either Power Generating Module or Distribution Network plant);

(d) reduced plant reactance’s (if possible);

(e) installation of protection to identify pole-slipping;

(f) increased fault level infeed from the Distribution Network at the Connection Point.

In determining mitigation measures which are reasonably practicable, due consideration should be given to the cost of implementing the measures and the benefits to the Distribution Network and Generators in terms of reduced risk of system instability.
9.6 Island Mode

9.6.1 A fault or planned outage, which results in the disconnection of a Power Generating Module, together with an associated section of Distribution Network, from the remainder of the Total System, creates the potential for island mode operation. It will be necessary for the DNO to decide, dependent on local network conditions, if it is desirable for the Generators to continue to generate onto the islanded DNO’s Distribution Network. The key potential advantage of operating in island mode is to maintain continuity of supply to the portion of the Distribution Network containing the Power Generating Module. The principles discussed in this section generally also apply where Power Generating Modules on a Generator’s site is designed to maintain supplies to that site in the event of a failure of the DNO supply.

9.6.2 When considering whether Power Generating Modules can be permitted to operate in island mode, detailed studies need to be undertaken to ensure that the islanded system will remain stable and comply with all statutory obligations and relevant planning standards when separated from the remainder of the Total System. Before operation in island mode can be allowed, a contractual agreement between the DNO and Generator shall be in place and the legal liabilities associated with such operation shall be carefully considered by the DNO and the Generator. Consideration should be given to the following areas:

(a) load flows, voltage regulation, frequency regulation, voltage unbalance, voltage flicker and harmonic voltage distortion;

(b) earthing arrangements;

(c) short circuit currents and the adequacy of protection arrangements;

(d) System Stability;

(e) resynchronisation to the Total System;

(f) safety of personnel.

9.6.3 Suitable equipment will need to be installed to detect that an island situation has occurred and an intertripping scheme is preferred to provide absolute discrimination at the time of the event. Confirmation that a section of Distribution Network is operating in island mode, and has been disconnected from the Total System, will need to be transmitted to the Power Generating Module(s) protection and control schemes.

9.6.4 The ESQCR (NI) requires that supplies to Customers are maintained within statutory limits at all times ie when they are supplied normally and when operating in island mode. Detailed system studies including the capability of the Power Generating Module and its control / protections systems will be required to determine the capability of the Power Generating Module to meet these requirements immediately as the island is created and for the duration of the island mode operation.

10 Generators that intend to operate their installation in island mode cannot follow the Integrated Micro Generation and Storage procedure.
9.6.5 The ESQCR (NI) also require that Distribution Networks are earthed at all times. Generators, who are not permitted to operate their installations and plant with an earthed star-point when in parallel with the Distribution Network, shall provide an earthing transformer or switched star-point earth for the purpose of maintaining an earth on the system when islanding occurs. The design of the earthing system that will exist during island mode operation should be carefully considered to ensure statutory obligations are met and that safety of the Distribution Network to all users is maintained. Further details are provided in Section 8.

9.6.6 Detailed consideration shall be given to ensure that protection arrangements are adequate to satisfactorily clear the full range of potential faults within the islanded system taking into account the reduced fault currents and potential longer clearance times that are likely to be associated with an islanded system.

9.6.7 Switchgear shall be rated to withstand the voltages which may exist across open contacts under islanded conditions. The DNO may require interlocking and isolation of its circuit breaker(s) to prevent out of phase voltages occurring across the open contacts of its switchgear. Intertipping or interlocking should be agreed between the DNO and the Generator where appropriate.

9.6.8 It will generally not be permissible to interrupt supplies to DNO Customers for the purposes of resynchronisation. The design of the islanded system shall ensure that synchronising facilities are provided at the point of isolation between the islanded network and the DNO supply. Specific arrangements for this should be agreed and recorded in the Connection Agreement with the DNO. If no facilities exist for the subsequent resynchronisation with the rest of the DNO’s Distribution Network then the Generator will, under DNO instruction, ensure that the Power Generating Module is disconnected for resynchronisation.

9.7 Fault Contributions and Switchgear Considerations

9.7.1 Under the ESQCR (NI) and the EaWR (NI) the Generator and the DNO have legal duties to ensure that their respective systems are capable of withstanding the short circuit currents associated with their own equipment and any infeed from any other connected system.

9.7.2 The Generator may accept that protection installed on the Distribution Network can help discharge some of the legal obligations relating to fault clearance and, if requested, the DNO should consider allowing such faults on the Generator’s Installation to be detected by DNO protection systems and cleared by the DNO’s circuit breaker. The DNO will not allow the Generator to close the DNO’s circuit breaker nor to synchronise using the DNO’s circuit breaker. In all such cases the exact nature of the protection afforded by the DNO’s equipment should be agreed and documented. The DNO may make a charge for the provision of this service.

9.7.3 The design and safe operation of the Generator’s Installation and the DNO’s Network depend upon accurate assessment of the contribution to the short circuit current made by all the Power Generating Modules operating in parallel with the Distribution Network at the instant of fault and the Generator should discuss this with the DNO at the earliest possible stage.

9.7.4 Short circuit current calculations should take account of the contributions from all synchronous and asynchronous infeeds including induction motors and the contribution from Inverter connected Power Generating Modules. The prospective short circuit ‘make’ and ‘break’ duties on switchgear should be calculated to ensure that plant is not potentially over-stressed. The maximum short
circuit duty might not occur under maximum generation conditions; it may occur during planned or automatic operations carried out either on the Distribution Network or Transmission System. Studies shall therefore consider all credible Distribution Network running arrangements which are likely to increase Distribution Network short circuit levels. The level of load used in the assessment should reflect committed projects as well as the existing loads declared in the DNO’s Statement on Distribution System Capacity. Guidance on short circuit calculations is given in EREC G74.

9.7.5 The connection of a Power Generating Module can raise the Distribution Network reactance/resistance (X/R) ratio. In some cases, this will place a more onerous duty on switchgear by prolonging the duration of the DC component of fault current from fault inception. This can increase the proportion of the DC component of the fault current and delay the occurrence of current zeros with respect to voltage zeros during the interruption of fault current. The performance of connected switchgear shall be assessed to ensure safe operation of the Distribution Network. The performance of protection may also be impaired by partial or complete saturation of current transformers resulting from an increase in Distribution Network X/R ratio.

9.7.6 Newly installed protection systems and circuit breakers for Power Generating Module connections should be designed, specified and operated to account for the possibility of out-of-phase operation. It is expected that the DNO's metering/interface circuit breaker will be specified for this duty, but in the case of existing circuit breakers on the Distribution Network, the DNO will need to establish the possibility or otherwise of the DNO’s protection (or the Generator’s protection if arranged to trip the DNO’s circuit breaker) initiating a circuit breaker trip during a period when one of more Power Generating Modules might have lost Synchronism with the Total System. Where necessary, switchgear replacement, improved security arrangements and other control measures should be considered to mitigate this risk.

9.7.7 When connection of a Power Generating Module is likely to increase short circuit currents above Distribution Network design ratings, consideration should be given to the installation of reactors, sectionalising networks, connecting the Power Generating Module to part of the Distribution Network operating at a higher voltage, changing the Power Generating Module specification or other means of limiting short circuit current infeed. If fault limiting measures are not cost effective or feasible or have a significant effect on other users, Distribution Network plant with the potential to be subjected to short circuit currents in excess of its rating should be replaced or reference made to the relevant Manufacturer to determine whether or not the existing plant rating(s) can be enhanced. In situations where Distribution Network design ratings would be exceeded in infrequent but credible Distribution Network configurations, then constraining the Power Generating Module off during periods of such Distribution Network configurations may provide a suitable solution. When assessing short circuit currents against Distribution Network design ratings, suitable safety margins should be allowed to cater for tolerances that exist in the Distribution Network data and Power Generating Module parameters used in system modelling programs. On request from a Generator the DNO will provide the rationale for determining the value of a specific margin being used in Distribution Network studies.

9.7.8 For busbars with three or more direct connections to the rest of the Total System, consideration may be given to reducing fault levels by having one of the connections 'open' and on automatic standby. This arrangement will only be
acceptable provided that the loss of one of the remaining circuits will not cause the
group to come out of Synchronism, cause unacceptable voltage excursions or
overloading of Distribution Network or Transmission System plant and
equipment. The use of the proposed Power Generating Module to prevent
overloading of Distribution Network plant and equipment should be considered
with reference to EREC P2.

9.7.9 Disconnection of a Power Generating Module shall be achieved by the
separation of mechanical contacts unless the disconnection is at Low Voltage and
the equipment at the point of disconnection contains appropriate self monitoring of
the point of disconnection, in which case an appropriate electronic means such as
a suitably rated semiconductor switching device would be acceptable. The self
monitoring facility shall incorporate fail safe monitoring to check the voltage level at
the output stage. In the event that the solid state switching device fails to
disconnect the Power Generating Module, the voltage on the output side of the
switching device shall be reduced to a value below 50 V within 0.5 s. For the
avoidance of doubt this disconnection is a means of providing LoM disconnection
and not as a point of isolation to provide a safe system of work.
10 Protection

10.1 General

10.1.1 The main function of the protection systems and settings described in this document is to prevent the Power Generating Module supporting an islanded section of the Distribution Network when it would or could pose a hazard to the Distribution Network or Customers connected to it. The settings recognize the need to avoid nuisance tripping and therefore require a two stage approach where practicable, ie to have a long time delay for smaller excursions that may be experienced during normal Distribution Network operation, to avoid nuisance tripping, but with a faster trip, where possible, for greater excursions.

10.1.2 In accordance with established practice it is for the Generator to install, own and maintain this protection. The Generator can therefore determine the approach, ie per Power Generating Module or per installation, and where in the installation the protection is sited.

10.1.3 Where a common protection system is used to provide the protection function for multiple Power Generating Modules the complete installation cannot be considered to comprise Fully Type Tested Power Generating Modules if the protection and connections are made up on site and so cannot be factory tested or Type Tested. If the units or Power Generating Modules are specifically designed to be interconnected on site via plugs and sockets, then provided the assembly passes the function tests required in Form A2-4 (Annex A.2), the Power Generating Modules can retain Type Tested status.

10.1.4 Type Tested Interface Protection shall have protection settings set during manufacture. An Interface Protection device or relay can only be considered Type Tested if:

a) The frequency and LoM protection settings are factory set in firmware by the Manufacturer to those in Table 10.1 and cannot be changed outside the factory (except as provided by (e) below).

b) The voltage protection settings are factory set to those in Table 10.1 and can be changed by agreement with the DNO and by personnel specifically instructed by the Generator to make this change.

c) The access by the personnel specifically instructed shall be controlled by a password, pin or a physical switch that has the facility to be sealed.

d) Any Interface Protection device functionality other than the voltage protection settings (eg such as any auto reclosing functionality) can only be changed by personnel specifically empowered to do so by the Generator.

e) Any changes to device firmware etc, where Type Tested status is to be retained, outside of the original factory environment shall be undertaken by personnel specifically empowered and equipped for that task by the Manufacturer.

10.1.5 Once the Power Generating Modules has been installed and commissioned the protection settings shall only be altered following written agreement between the DNO and the Generator. Paragraph 10.6.15 details the display requirements.
10.1.6 In exceptional circumstances additional protection may be required by the DNO to protect the Distribution Network and its Customers from the Power Generating Module.

10.1.7 Note that where the Generator installs an export limitation scheme in accordance with EREC G100 the installation will also need to comply with the requirements of that EREC.

10.2 Co-ordinating with DNO’s Distribution Network’s Existing Protection

10.2.1 It will be necessary for the protection associated with Power Generating Modules to co-ordinate with the Protection associated with the DNO’s Distribution Network as follows:

(a) For Power Generating Modules directly connected to the DNO’s Distribution Network the Power Generating Module shall meet the target clearance times for fault current interchange with the DNO’s Distribution Network in order to reduce to a minimum the impact on the DNO’s Distribution Network of faults on circuits owned by the Generator. The DNO will ensure that the DNO protection settings meet its own target clearance times.

The target clearance times are measured from fault current inception to arc extinction and will be specified by the DNO to meet the requirements of the relevant part of the Distribution Network. A Generator may obtain relevant details specific to its Power Generating Facilities pursuant to paragraph CC6.4 of the Distribution Code. The DNO shall ensure that (subject to any necessary discrimination) the same fault clearance times can be achieved by its own apparatus at each Connection Point.

Unless otherwise agreed, the fault clearance times required by the Connection Agreement shall not be faster than 120 ms but, if otherwise agreed, nothing in this paragraph shall prevent a Power Generating Facility or the DNO’s apparatus at the Connection Point from having faster clearance times (subject to necessary discrimination being maintained). The times specified in the Connection Agreement will reflect the DNO’s view of the requirements of the Distribution Network, and the Generator’s Installation, for the expected life time of the Interface Protection (for example, 15 years). The probability that the fault clearance times stated in the Connection Agreement will be exceeded by any given fault shall be less than 2%.

To cover for failure of the above protection systems to meet the above fault clearance times, the Generator may be required to provide back up Interface Protection. The back up protection shall be required to discriminate with other protections fitted on the Distribution Network. Relevant details will be made available to a Generator upon request pursuant to paragraph CC7.1 of the Distribution Code.

(b) The settings of any protection controlling a circuit breaker or the operating values of any automatic switching device at the Connection Point shall have been agreed between the DNO and the Generator during the course of the application for a Connection Agreement. The settings and operating values will only be changed if both the DNO and the Generator agree. Neither the DNO nor the Generator shall unreasonably withhold their consent.
If in the opinion of the **DNO** following an overall review of **Distribution Network** protection requirements improvements to any **Power Generating Module** protection scheme are necessary, the relevant provisions of the **Connection Agreement** shall be followed.

The **Power Generating Module** protection shall co-ordinate with any auto reclose policy specified by the **DNO**.

10.2.2 Specific protection required for **Power Generating Modules**

In addition to any protection installed by the **Generator** to meet the requirements of the **Power Generating Facility** and statutory obligations, the **Generator** shall install protection to achieve the following objectives:

(a) For all **Power Generating Modules**:

i. To disconnect the **Power Generating Module** from the system when a system abnormality occurs that results in an unacceptable deviation of the frequency or voltage at the **Connection Point**, recognizing the requirements to ride through faults as detailed in Sections 12.3 and 13.4;

ii. To ensure the automatic disconnection of the **Power Generating Module**, or where there is constant supervision of an installation, the operation of an alarm with an audio and visual indication, in the event of any failure of supplies to the protective equipment that would inhibit its correct operation.

(b) For **polyphase Power Generating Modules**:

i. To inhibit connection of **Power Generating Modules** to the system unless all phases of the **DNO’s Distribution Network** are present and within the agreed ranges of protection settings;

ii. To disconnect the **Power Generating Module** from the system in the event of the loss of one or more phases of the **DNO’s Distribution Network**.

(c) For **single phase Power Generating Modules**:

i. To inhibit connection of **Power Generating Modules** to the system unless that phase of the **DNO’s Distribution Network** is present and within the agreed ranges of protection settings;

ii. To disconnect the **Power Generating Module** from the system in the event of the loss of that phase of the **DNO’s Distribution Network**.
10.3 Protection Requirements

10.3.1 Suitable protection arrangements and settings will depend upon the particular Generators’ Installation and the requirements of the DNO’s Distribution Network. These individual requirements shall be ascertained in discussions with the DNO. To achieve the objectives above, the protection shall include the detection of:

- Under Voltage (2 stage);
- Over Voltage (1 stage);
- Under Frequency (1 stage);
- Over Frequency (1 stage);
- Loss of Mains (LoM).

The LoM protection will depend for its operation on the detection of some suitable parameter, for example, rate of change of frequency (RoCoF), or unbalanced voltages. More details on LoM protection are given in Section 10.4.

It is in the interest of Generators, the DNO and the TSO that Power Generating Modules remain synchronised to the Distribution Network during system disturbances, and conversely to disconnect reliably for true LoM situations. Frequency and voltage excursions less than the protection settings should not cause protection operation.

10.3.2 The protective equipment, provided by the Generator, to meet the requirements of this section shall be installed in a suitable location that affords visual inspection of the protection settings and trip indicators and is secure from interference by unauthorised personnel.

10.3.3 Installation of automatic reconnection systems for Type B shall be subject to prior authorisation from the DNO. Type C and Type D Power Generating Modules shall obtain authorisation from the DNO, or the TSO as applicable, prior to synchronisation.

10.3.4 The frequency and voltage at the DNO’s side of the supply terminals at the Connection Point shall be within the frequency and voltage ranges of the Interface Protection as listed in paragraph 10.6.7 for at least 60 s before the Power Generating Module is allowed to automatically reconnect to the DNO’s Distribution Network. There is in general no maximum admissible ramp rate for Active Power output on connecting or reconnecting, although it is a requirement to state the assumed maximum ramp rate for the Power Generating Module as part of the application for connection. The maximum admissible ramp rate of Active Power output on connection is 10% of Registered Capacity per minute.

10.3.5 If automatic resetting of the protective equipment is used, there shall be a time delay to ensure that healthy supply conditions exist for a minimum continuous period of 60 s. Reset times may need to be co-ordinated where more than one Power Generating Module is connected to the same feeder. The automatic reset shall be inhibited for faults on the Generator's Installation.
10.3.6 Protection equipment is required to function correctly within the environment in which it is placed and shall satisfy the following standards:

- BS EN 61000 (Electromagnetic Standards);
- BS EN 60255 (Electrical Relays);
- BS EN 61810 (Electrical Elementary Relays);
- BS EN 60947 (Low Voltage Switchgear and Control gear);
- BS EN 61869 (Instrument Transformers; Additional requirements for current transformers).

Where these standards have more than one part, the requirements of all such parts shall be satisfied, so far as they are applicable.

10.3.7 Protection equipment and protection functions may be installed within, or form part of the Power Generating Module control equipment as long as:

(a) the control equipment satisfies all the requirements of Section 10 including the relevant standards specified in paragraph 10.3.6

(b) the Power Generating Module shuts down in a controlled and safe manner should there be an equipment failure that affects both the protection and control functionality, for example a power supply failure or microprocessor failure; and

(c) the equipment is designed and installed so that protection calibration and functional tests can be carried out easily and safely using secondary injection techniques (ie using separate Low Voltage test equipment).

10.4 Loss of Mains (LoM)

10.4.1 To achieve the objectives of Section 10.1.1, in addition to protection installed by the Generator for the Generator’s own purposes, the Generator shall install protection to achieve (amongst other things) disconnection of the Power Generating Module from the Distribution Network in the event of loss of one or more phases of the DNO’s supply. This LoM protection is required to ensure that the Power Generating Module is disconnected, to ensure that the requirements for Distribution Network earthing, and out-of-Synchronism closure are complied with and that Customers are not supplied with voltage and frequencies outside statutory limits.

10.4.2 LoM protection is required for all Type A, Type B, Type C and Type D Power Generating Modules.

10.4.3 A problem can arise for Generators who operate Power Generating Modules in parallel with the Distribution Network prior to a failure of the network supply because if a Power Generating Module continues to operate in some manner, even for a relatively short period of time, there is a risk that when the network supply is restored the Power Generating Module will be out of Synchronism with the Total System and suffer damage. LoM protection can be employed to disconnect the Power Generating Module immediately after the supply is lost, thereby avoiding damage to the Power Generating Module.
10.4.4 Where the amount of Distribution Network load that the Power Generating Module will attempt to pick up following a fault on the Distribution Network is significantly more than its capability the Power Generating Module will rapidly disconnect, or stall. However, depending on the exact conditions at the time of the Distribution Network failure, there may or may not be a sufficient change of load on the Power Generating Module to be able to reliably detect the failure. The Distribution Network failure may result in one of the following load conditions being experienced by the Power Generating Module:

(a) The load may slightly increase or reduce, but remain within the capability of the Power Generating Module. There may even be no change of load;

(b) The load may increase above the capability of the prime mover, in which case the Power Generating Module will slow down, even though the alternator may maintain voltage and current within its capacity. This condition of speed/frequency reduction can be easily detected; or

(c) The load may increase to several times the capability of the Power Generating Module, in which case the following easily detectable conditions will occur:
 - Overload and accompanying speed/frequency reduction;
 - Over current and under voltage on the alternator.

10.4.5 Conditions (b) and (c) are easily detected by the under and over voltage and frequency protection required in this document. However, condition (a) presents most difficulty, particularly if the load change is extremely small and therefore there is a possibility that part of the Distribution Network supply being supplied by the Power Generating Module will be out of Synchronism with the Total System. LoM protection is designed to detect these conditions.

10.4.6 Not used.

10.4.7 The LoM protection can utilise one or a combination of the passive protection principles such as reverse Active Power flow and rate of change of frequency (RoCoF). Alternatively, an active method such as frequency shifting may be employed. These may be arranged to trip the interface circuit breaker at the DNO - Generator interface, thus, leaving the Power Generating Module available to satisfy the load requirements of the site or the Power Generating Module circuit breaker can be tripped, leaving the breaker at the interface closed and ready to resume supply when the Distribution Network supply is restored. The most appropriate arrangement is subject to agreement between the DNO and Generator.

10.4.8 Protection based on measurement of reverse flow of Active Power can be used when circumstances permit and shall be set to suit the Power Generating Module rating and the site load conditions.

10.4.9 Not used
10.4.10 However, where the **Power Generating Facilities** normal mode of operation is to export power, it is not possible to use a reverse power relay and consequently failure of the supply cannot be detected by measurement of reverse power flow. The protection should then be specifically designed to detect loss of the mains connection using techniques to detect the rate of change of frequency and/or **Power Factor**. All these techniques are susceptible to **Distribution Network** conditions and the changes that occur without islanding taking place. These relays shall be set to prevent islanding but with the best possible immunity to unwanted nuisance operation.

10.4.11 RoCoF relays use a measurement of the period of the mains voltage cycle. The RoCoF technique measures the rate of change in frequency caused by any difference between prime mover power and electrical output power of the **Power Generating Module** over a number of cycles. RoCoF relays should normally ignore the slow changes but respond to relatively rapid changes of frequency which occur when the **Power Generating Module** becomes disconnected from the **Total System**. The voltage vector shift technique is not an acceptable loss of mains protection.

10.4.12 Should spurious tripping present a nuisance to the **Generator**, the cause shall be jointly sought with the **DNO**. Raising settings on any relay to avoid spurious operation may reduce a relay’s capability to detect islanding and it is important to evaluate fully such changes. Annex D.2 provides some guidance for assessments, which assume that during a short period of islanding the trapped load is unchanged. In some circumstances it may be necessary to employ a different technique, or a combination of techniques to satisfy the conflicting requirements of safety and avoidance of nuisance tripping. In those cases where the **DNO** requires LoM protection this shall be provided by a means not susceptible to spurious or nuisance tripping.

10.4.13 Not used.

10.4.14 It is the responsibility of **Generators** to incorporate what they believe to be the most appropriate technique or combination of techniques to detect a LoM event in their protection systems. This will be based on knowledge of the **Power Generating Module**, site and network load conditions. The **DNO** will assist in the decision making process by providing information on the **Distribution Network** and its loads. The settings applied shall be biased to ensure detection of islanding under all practical operating conditions.

10.5 Additional DNO Protection

10.5.1 Following the **DNO** connection study, the risk presented to the **Distribution Network** by the connection of a **Power Generating Module** may require additional protection to be installed and may include the detection of:

- Neutral Voltage Displacement (NVD);
- Over Current;
- Earth Fault;
- Reverse Power.
This protection will normally be installed on equipment owned by the DNO unless otherwise agreed between the DNO and Generator. This additional protection may be installed and arranged to operate the DNO interface circuit breaker or any other circuit breakers, subject to the agreement of the DNO and the Generator.

The requirement for additional protection will be determined by each DNO according to size of Power Generating Module, point of connection, network design and planning policy. This is outside the scope of this document.

10.5.2 Neutral Voltage Displacement (NVD) Protection

10.5.2.1 Section 9.6 states that the DNO will undertake detailed consideration to ensure that protection arrangements are adequate to satisfactorily clear the full range of potential faults within an islanded system.

10.5.2.2 Section 10.4 describes LoM protection which the Generator shall install to achieve (amongst other things) disconnection of the Power Generating Module from the Distribution Network in the event of loss of one or more phases of the DNO’s supply.

10.5.2.3 Where a Power Generating Module inadvertently operates in island mode, and where there is an earth fault existing on the DNO’s HV Distribution Network NVD protection will detect the earth fault, and disconnect the HV system from the island.

10.5.2.4 NVD protection is required for all Power Generating Modules with a Registered Capacity > 200 kVA.

10.5.2.5 Not used

10.6 Protection Settings

10.6.1 The following notes aim to explain the settings requirements as given in Section 10.6.7 below.

10.6.2 Loss of Mains

A LoM protection of the RoCoF type will generally be appropriate for Type A, Type B, Type C and Type D Power Generating Modules.

10.6.3 Under Voltage

In order to help maintain Total System Stability, the protection settings aim to facilitate transmission Fault Ride Through capability (as required in Sections 12.3 and 13.3 below). The overall aim is to ensure that Power Generating Module is not disconnected from the Distribution Network unless there is material disturbance on the Distribution Network, as disconnecting generation unnecessarily will tend to make an under voltage situation worse. To that end a 2-stage under voltage protection should be applied to maximise fault ride through capability as follows:

- Stage 1 should have a setting of -15% and a time delay of 3.0 s, and
- Stage 2 should have a setting of -40% and a time delay of 2.0 s.
10.6.4 Over Voltage

Over voltages are potentially more dangerous than under voltages and hence the acceptable excursions from the norm are smaller and time delays shorter, a 1-Stage over voltage protection is to be applied with a setting of +10% with a time delay of 0.5 s to detect islanding.

To achieve high utilisation and Distribution Network efficiency, it is common for the HV Distribution Network to be normally operated near to the upper statutory voltage limits. The presence of a Power Generating Module within such a Distribution Network may increase the risk of the statutory limit being exceeded, eg when the Distribution Network is operating abnormally. In such cases the DNO may specify additional over voltage protection at the Power Generating Module Connection Point. This protection will typically have an operating time delay long enough to permit the correction of transient over voltages by automatic tap-changers.

10.6.5 Over Frequency

Power Generating Modules are required to stay connected to the Total System for frequencies up to 52 Hz for up to 60 minutes so as to provide the necessary regulation to control the Total System frequency to a satisfactory level. In order to prevent the unnecessary disconnection of a large volume of smaller Power Generating Modules, for all LV and HV connected Power Generating Modules a single stage protection is to be applied that has a time delay of 1.0 s and a setting of 52 Hz. If the frequency rises to or above 52 Hz as the result of an undetected islanding condition, the Power Generating Module will be disconnected with a delay of 1.0 s plus circuit breaker operating time.

10.6.6 Under Frequency

All Power Generating Facilities are required to maintain connection unless the Total System frequency falls below 48 Hz for 0.5 s.
10.6.7 Protection Settings

10.6.7.1

Table 10.1 Settings for Long-Term Parallel Operation

<table>
<thead>
<tr>
<th>Protection Function</th>
<th>Trip Setting</th>
<th>Time Delay Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>U/V Stage 1</td>
<td>0.85 pu$^\circ$</td>
<td>3.0 s</td>
</tr>
<tr>
<td>U/V Stage 2</td>
<td>0.6 pu$^\circ$</td>
<td>2.0 s</td>
</tr>
<tr>
<td>O/V</td>
<td>1.1 pu$^\circ$</td>
<td>0.5 s</td>
</tr>
<tr>
<td>U/F</td>
<td>48 Hz</td>
<td>0.5 s</td>
</tr>
<tr>
<td>O/F</td>
<td>52 Hz$^#$</td>
<td>1.0 s</td>
</tr>
<tr>
<td>LoM (RoCoF)$^\¥$</td>
<td>1.0 Hz$^{-1}$</td>
<td>0.5 s$^{-1}$</td>
</tr>
</tbody>
</table>

Note: $\¥$ The required protection requirement is expressed in Hertz per second (Hzs$^{-1}$). The time delay should begin when the measured rate exceeds the threshold expressed in Hzs$^{-1}$ and be reset if it falls below that threshold. The relay shall not trip unless the measured rate remains above the threshold expressed in Hzs$^{-1}$ continuously for 500 ms. Setting the number of cycles on the relay used to calculate the RoCoF is not an acceptable implementation of the time delay since the relay would trip in less than 500 ms if the rate was significantly higher than the threshold.

$^\¥$ RoCoF – Rate of Change of Frequency

$^\circ$ Base unit is defined as the nominal voltage at the Connection Point. This applies to phase-phase and phase-neutral voltages.

$^\#$ A default setting of 52 Hz will apply unless a lower setting is requested by the DNO.

For each of the protection functions, the circuit breaker opening should occur with no inherent time delay following a protection trip operation from the relay.

In line with HSENI recommendations, all Generators should review and update relevant risk assessments to take account of the risks associated with islanding, with particular emphasis on out of phase re-closure, when adhering to the requirements of 10.6.7. Further information on this is included in Annex D4.
10.6.7.2

Table 10.2 – Settings for Infrequent Short-Term Parallel Operation

<table>
<thead>
<tr>
<th>Protection Function</th>
<th>Type A, Type B and Type C Power Generating Module</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LV Protection</td>
</tr>
<tr>
<td></td>
<td>Trip Setting</td>
</tr>
<tr>
<td>U/V</td>
<td>Vφ-n(^\d) -10%</td>
</tr>
<tr>
<td>O/V</td>
<td>Vφ-n(^\d) + 10%</td>
</tr>
<tr>
<td>U/F</td>
<td>48 Hz</td>
</tr>
<tr>
<td>O/F</td>
<td>50.5 Hz</td>
</tr>
</tbody>
</table>

\(^\d\)A value of 230 V shall be used in all cases for Power Generating Facilities connected to a DNO’s LV Distribution Network (ie the U/V LV trip setting is 207 V and the O/V trip setting is 262.2 V).

\(^\d\)A value to suit the voltage of the HV Connection Point.

10.6.8 Over and Under voltage protection shall operate independently for all three phases in all cases.

10.6.9 The settings in Table 10.1 should generally be applied to all Power Generating Modules. In exceptional circumstances Generators have the option to agree alternative settings with the DNO if there are valid justifications in that the Power Generating Module may become unstable or suffer damage with the settings specified in Table 10.1. The agreed settings should be recorded in the Connection Agreement.

10.6.10 Once the settings of relays have been agreed between the Generator and the DNO they shall not be altered without the written agreement of the DNO. Any revised settings should be recorded again in the amended Connection Agreement.

10.6.11 The under/over voltage and frequency protection may be duplicated to protect the Power Generating Module when operating in island mode although different settings may be required.

10.6.12 For LV connected Power Generating Modules the voltage settings will be based on the 230 V nominal system voltage. In some cases Power Generating Modules may be connected to LV systems with non-standard operating voltages. Paragraph 10.6.14 details how suitable settings can be calculated based upon the settings in Table 10.1. Note that Power Generating Modules with non-standard LV protection settings need to be agreed by the DNO on a case by case basis.

10.6.13 Where an installation contains Power Factor correction equipment which has a variable susceptance controlled to meet the Reactive Power demands, the probability of sustained generation is increased. For LV installations, additional protective equipment provided by the Generator, is required as in the case of self-excited asynchronous machines.
10.6.14 Not used

10.6.15 The Generator shall provide a means of displaying the protection settings so that they can be inspected if required by the DNO to confirm that the correct settings have been applied. The Manufacturer needs to establish a secure way of displaying the settings in one of the following ways:

(a) A display on a screen which can be read;
(b) A display on an electronic device which can communicate with the Power Generating Module and confirm that it is the correct device by means of a Identification number / name permanently fixed to the device and visible on the electronic device screen at the same time as the settings;
(c) Display of all settings including nominal voltage and current outputs, alongside the identification number / name of the device, permanently fixed to the Power Generating Module.

The provision of loose documents, documents attached by cable ties etc., a statement that the device conforms with a standard, or provision of data on adhesive paper based products which are not likely to survive due to fading, or failure of the adhesive, for at least 20 years is not acceptable.

The protection arrangements (including changes to protection arrangements) for individual schemes will be agreed between the Generator and the DNO in accordance with this document.

10.6.16 Whilst the protection schemes and settings for internal electrical faults should mitigate any damage to the Power Generating Module they shall not jeopardise the performance of a Power Generating Module, in line with the requirements set out in this EREC.

10.6.17 The Generator shall organise its protection and control devices in accordance with the following priority ranking (from highest to lowest) for Type B, Type C and Type D Power Generating Modules:

(a) network and Power Generating Module protection;
(b) synthetic inertia, if applicable;
(c) frequency control (Active Power adjustment -if any);
(d) power restriction (if any); and
(e) power gradient constraint (if any).

10.6.18 For the avoidance of doubt where an internal fault on the Power Generating Module occurs during any significant event on the Total System, the Power Generating Module’s internal protection should trip the module to ensure safety and minimise damage to the Power Generating Module.
10.7 Typical Protection Application Diagrams

10.7.1 This Section provides some typical protection application diagrams in relation to parallel operation of Power Generating Modules within DNO Distribution Networks. The diagrams only relate to DNO requirements in respect of the connection to the Distribution Network and do not necessarily cover the safety of the Generator's Installation. The diagrams are intended to illustrate typical installations.

Figure 10.1 - List of Symbols used in Figures 10.2 to 10.6.

Figure 10.2 - Typical Protection Arrangement for an HV Power Generating Module Connected to a DNO's HV Distribution Network Designed for Parallel Operation Only.

Figure 10.3 - Typical Protection Arrangement for an HV Power Generating Module Connected to a DNO’s HV Distribution Network Designed for both Independent Operation (ie Standby Operation) and Parallel Operation.

Figure 10.4 - Typical Protection Arrangement for an LV Power Generating Module Connected to a DNO’s HV Distribution Network and designed for both Independent Operation (ie Standby Operation) and Parallel Operation.

Figure 10.5 - Typical Protection Diagram for an LV Power Generating Module Connected to a DNO's LV Distribution Network Designed for Parallel Operation Only.

Figure 10.6 - Typical Protection Diagram for an LV Power Generating Module Connected to a DNO's LV Distribution Network Designed for both Independent Operation (ie Standby Operation) and Parallel Operation.

Diagram Notes:

a. Neutral Voltage Displacement Protection

With arc suppression coil systems, the NVD relay should be arranged to provide an alarm only.

b. Reverse Power Protection

Reverse power protection may be either a standard three phase reverse power relay set to operate at above the agreed level of export into the Distribution Network, or a more sensitive relay if no export is permitted.

c. Directional Protection

In some cases overcurrent protection may afford adequate back-up protection to the Distribution Network during system faults. However, where increased sensitivity is required, three phase directional overcurrent IDMT relays, or alternative voltage based protection may be used.
d Load Limitation Relay

Three phase definite time overcurrent relays, in addition to providing overload protection, could be arranged to detect phase unbalance. This condition may be due to pulled joints or broken jumpers on the incoming DNO underground or overhead HV supply.

NB Items (c) and (d) are alternatives and may be provided as additional protection.

e. Phase Unbalance Protection

Three phase thermal relays for detecting phase unbalance on the incoming DNO HV supply, eg pulled joints, broken jumpers or uncleared unbalanced faults.

f. Supply Healthy Protection

Some form of monitoring or protection is required to ensure that the DNO’s supply is healthy before synchronizing is attempted. This could be automatic under and over voltage monitoring, applied across all three phases, together with synchronising equipment designed such that closing of the synchronising circuit breaker cannot occur unless the requirements of paragraph 10.3.4 are met.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEF</td>
<td>Balanced Earth Fault</td>
<td>OV</td>
<td>Single Stage Over Voltage & Single Stage Under Voltage</td>
</tr>
<tr>
<td>CC</td>
<td>Circulating Current</td>
<td>UV</td>
<td>Single Stage Over Voltage & Single Stage Under Voltage</td>
</tr>
<tr>
<td>EI</td>
<td>Earth Fault (IDMT)</td>
<td>Ph</td>
<td>Phase Unbalance</td>
</tr>
<tr>
<td>3DCI</td>
<td>3 Pole Directional Overcurrent (IDMT)</td>
<td>RP</td>
<td>Reverse Power</td>
</tr>
<tr>
<td>LOM</td>
<td>Loss of Mains</td>
<td>OF</td>
<td>Single Stage Over Frequency & Single Stage Under Frequency</td>
</tr>
<tr>
<td>M</td>
<td>Metering</td>
<td>UF</td>
<td>Single Stage Over Frequency & Single Stage Under Frequency</td>
</tr>
<tr>
<td>NVD</td>
<td>Neutral Voltage Displacement</td>
<td>OV</td>
<td>1 Stage Over Voltage & 2 Stage Under Voltage</td>
</tr>
<tr>
<td>NVD</td>
<td>Neutral Voltage Displacement</td>
<td>2ST UV</td>
<td>1 Stage Over Voltage & 2 Stage Under Voltage</td>
</tr>
<tr>
<td>3OCI</td>
<td>3 Pole Overcurrent (IDMT)</td>
<td>SYNC</td>
<td>Synchronising</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Circuit Breaker</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10.1 - List of Symbols in Figures 10.2 – 10.6
Figure 10.2 - Typical Protection Arrangement for an HV Power Generating Module Connected to a DNO’s HV Distribution Network Designed for Parallel Operation Only
Figure 10.3 - Typical Protection Arrangement for an HV Power Generating Module Connected to a DNO's HV Distribution Network Designed for both Independent Operation (ie Standby Operation) and Parallel Operation
Figure 10.4 - Typical Protection Arrangement for an LV Power Generating Module Connected to a DNO’s HV Distribution Network and designed for both Independent Operation (ie Standby Operation) and Parallel Operation
Figure 10.5 - Typical Protection Diagram for an LV Power Generating Module Connected to a DNO's LV Distribution Network Designed for Parallel Operation Only
Figure 10.6 - Typical Protection Diagram for an LV Power Generating Module Connected to a DNO's LV Distribution Network Designed for both Independent Operation (ie Standby Operation) and Parallel Operation.
11 Type A Power Generating Module Technical Requirements

11.1 Power Generating Module Performance and Control Requirements – General

11.1.1 The requirements of this Section 11 do not apply in full to:

(a) Power Generation Facilities that are designed and installed for infrequent short term parallel operation only; or

(b) Electricity Storage Power Generation Modules within the Power Generating Facility.

Refer to Annex A.4 for details.

11.1.2 The Active Power output of a Power Generating Module should not be affected by voltage changes within the statutory limits declared by the DNO in accordance with the ESQCR (NI).

11.1.3 Power Generating Modules connected to the DNO’s Distribution Network shall be equipped with a logic interface (input port) in order to cease Active Power output within 5 s following an instruction being received at the input port.

11.1.3.1 By default the DNO logic interface will take the form of a simple binary output that can be operated by a simple switch or contactor. When the switch is closed the Power Generating Module can operate normally. When the switch is opened the Power Generating Module will reduce its Active Power to zero within 5 s. The signal from the Power Generating Module that is being switched can be either AC (maximum value 240 V) or DC (maximum value 110 V). If the DNO wishes to make use of the facility to cease Active Power output the DNO will agree with the Generator how the communication path is to be achieved.

11.1.4 Each item of a Power Generating Module and its associated control equipment shall be designed for stable operation in parallel with the Distribution Network.

11.1.5 When operating at rated power the Power Generating Module shall be capable of operating at a Power Factor within the range 0.98 lagging to 0.95 leading relative to the voltage waveform unless otherwise agreed with the DNO.

11.1.6 As part of the connection application process the Generator shall agree with the DNO the set points of the control scheme for voltage control, Power Factor control or Reactive Power control as appropriate. These settings, and any changes to these settings, shall be agreed with the DNO and recorded in the Connection Agreement. The information to be provided is detailed in Appendix A and Appendix B of the Distribution Code, Planning Code.

11.1.7 Load flow studies may be necessary to determine any output constraints or post fault actions necessary for n-1 fault conditions (where n-1 conditions are the first outage conditions as, for example, specified in EREC P2) involving a mixture of fault and planned outages. It may be necessary under these fault conditions, where the combination of Power Generating Module output, load and through flow levels leads to circuit overloading, to rapidly disconnect or constrain the Power Generating Module.
11.2 Frequency response

11.2.1 All Power Generating Modules should be capable of continuing to operate in parallel with the Distribution Network in accordance with the following:

(a) 47.0 Hz – 47.5 Hz Operation for a period of at least 20 seconds is required each time the frequency is within this range.

(b) 47.5 Hz – 49.0 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range.

(c) 49.0 Hz – 51.0 Hz Continuous operation of the Power Generating Module is required.

(d) 51.0 Hz – 51.5 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range.

(e) 51.5 Hz to 52.0 Hz Operation for a period of at least 60 minutes is required each time the frequency is within this range.

11.2.2 The requirements above do not apply where:

(a) The G99/NI relay has operated correctly, consistent with the settings agreed pursuant to G99/NI; or

(b) There is manual intervention by the Generator.

11.2.3 With regard to the rate of change of frequency withstand capability, a Power Generating Module shall be capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs\(^{-1}\) as measured over a rolling period of 500 ms unless disconnection was triggered by a rate of change of frequency type loss of mains protection or by the Power Generating Module’s own protection system for a co-incident internal fault as detailed in paragraph 10.6.18.

11.2.4 Output power with falling frequency

11.2.4.1 Each Power Generating Module, shall be capable of:

(a) continuously maintaining constant Active Power output for system frequency changes within the range 50.2 to 49.5 Hz; and

(b) (subject to the provisions of paragraph 11.2.1) maintaining its Active Power output at a level not lower than the figure determined by the linear relationships shown in Figure 11.1, that is if the frequency in quasi steady state falls below 49.5 Hz, the power output should not drop by more than pro-rata with frequency, ie the maximum permitted requirement is 100% power at 49.5 Hz falling linearly to 96% power at 47.5 Hz; and if the frequency drops transiently below 49.0 Hz, the power output should not drop by more than pro-rata with frequency, ie the maximum permitted requirement is 100% power at 49.0 Hz falling linearly to 96% power at 47.0 Hz.
The ambient conditions assumed for the requirement to maintain Active Power with falling frequency are 10°C, 70% relative humidity and 1013 hPa for gas fired turbine generators, and for ambient temperatures up to and including 25°C for all other Power Generating Facilities.

Figure 11.1 Change in Active Power with falling frequency

11.2.4.2 For the avoidance of doubt in the case of a Power Generating Module using an Intermittent Power Source where the power input will not be constant over time, the requirement is that the Active Power output shall be independent of system frequency under (a) above and should not drop with system frequency by greater than the amount specified in (b) above.

11.2.5 Limited Frequency Sensitive Mode – Over frequency

11.2.5.1 Each Power Generating Module shall be capable of reducing Active Power output in response to frequency on the Total System when this rises above 50.2 Hz. The Power Generating Module shall be capable of operating stably during LFSM-O operation.

(a) The Power Generating Module shall be capable of providing Active Power Frequency Response with a Droop setting in the range 2 – 12%, where the default setting is 4%.

(b) No intentional delay should be programmed to ensure that the initial delay is as short as possible with a maximum of 2 s.

(c) For deviations in frequency beyond 50.9 Hz the measured rate of change of Active Power reduction shall exceed 0.5% s\(^{-1}\) of the initial output.

(d) The LFMS-O response shall be reduced when the frequency subsequently falls again and, when to a value less than 50.2 Hz, at least half the proportional increase in Active Power shall be achieved in 10 s. For a frequency excursion returning from beyond 50.9 Hz the measured rate of change Active Power increase shall exceed 0.5% s\(^{-1}\).
(e) If the reduction in **Active Power** is such that the **Power Generation Module** reaches its **Minimum Stable Operating Level**, it shall continue to operate stably at this level.

11.2.5.2 When the **Power Generating Module** is providing **Limited Frequency Sensitive Mode Over frequency** (LFSM-O) response it shall continue to provide the frequency response until the frequency has returned to, or is below, 50.2 Hz.

11.2.5.3 Steady state operation below **Minimum Stable Operating Level** is not expected but if system operating conditions cause operation below **Minimum Stable Operating Level** which give rise to operational difficulties then the **Generator** shall be able to return the output of the **Power Generating Module** to an output of not less than the **Minimum Stable Operating Level**.

11.3 **Fault Ride Through and Phase Voltage Unbalance**

11.3.1 Where it has been specifically agreed between the **DNO** and the **Generator** that a **Power Generating Facility** will contribute to the **DNO’s Distribution Network** security, (eg for compliance with EREC P2) the **Power Generating Module(s)** may be required to withstand, without tripping, the effects of a close up three phase fault and the **Phase (Voltage) Unbalance** imposed during the clearance of a close-up phase-to-phase fault, in both cases cleared by the **DNO’s main protection**. The **DNO** will advise the **Generator** in each case of the likely tripping time of the **DNO’s protection**, and for phase-phase faults, the likely value of **Phase (Voltage) Unbalance** during the fault clearance time.

11.3.2 In the case of phase to phase faults on the **DNO’s Distribution Network** that are cleared by system back-up protection which will be within the plant short time rating on the **DNO’s Distribution Network** the **DNO**, on request during the connection process, will advise the **Generator** of the expected **Phase (Voltage) Unbalance**.

11.4 **Voltage Limits and Control**

11.4.1 Where a **Power Generating Module** is remote from a **Network** voltage control point it may be required to withstand voltages outside the normal statutory limits. In these circumstances, the **DNO** should agree with the **Generator** the declared voltage and voltage range at the **Connection Point**. Immunity of the **Power Generating Module** to voltage changes of ± 10% of the declared voltage is recommended, subject to design appraisal of individual installations.

11.4.2 The connection of a **Power Generating Module** to the **Distribution Network** shall be designed in such a way that operation of the **Power Generating Module** does not adversely affect the voltage profile of and voltage control employed on the **Distribution Network**. ETR 126 provides the **DNOs** with guidance on active management solutions to overcome voltage control limitations.

11.4.3 The final responsibility for control of **Distribution Network** voltage does however remain with the **DNO**.
12 Type B Power Generating Module Technical Requirements

12.1 Power Generating Module Performance and Control Requirements - General

12.1.1 The requirements of this Section 12 do not apply in full to:

(a) Power Generation Facilities that are designed and installed for infrequent short term parallel operation only; or

(b) Electricity Storage Power Generation Modules within the Power Generating Facility.

Refer to Annex A.4 for details.

12.1.2 The Active Power output of a Power Generating Module should not be affected by voltage changes within the statutory limits declared by the DNO in accordance with the ESQCR (NI).

12.1.3 Power Generating Modules shall be equipped with a communication interface (input port) in order to be able to reduce Active Power output following an instruction at the input port.

12.1.3.1 DNOs currently are developing active network management approaches and there is no common standard for communication interfaces.

12.1.3.2 Protocols currently in use between DNOs and Generators include simple current loop; DNP3 and IEC 61850.

12.1.3.3 The DNO will discuss and agree with the Generator for each Power Generating Facility the protocol to be used, including how any risks of maloperation etc are to be managed.

12.1.3.4 By default if nothing is specified by the DNO then a simple hard-wired current loop interface should be provided where a 4 mA to 20 mA DC signal corresponding to 0 pu to 1.0 pu of Registered Capacity Active Power.

12.1.3.5 The Active Power reduction will be either between 1.0 pu of Registered Capacity Active Power and zero, or between 1.0 pu of Registered Capacity Active Power and Minimum Stable Operating Level. In the latter case the Generator will agree with the DNO how zero output can be achieved, including the option of using the logic interface as described in paragraph 11.1.3.1.

12.1.3.6 If the DNO wishes to make use of the facility to reduce Active Power output the DNO will agree with the Generator the communication interface and other necessary equipment that will be needed.

12.1.4 The Power Generating Module and its associated control equipment shall be designed for stable operation in parallel with the Distribution Network.
12.1.5 Load flow and System Stability studies may be necessary to determine any output constraints or post fault actions necessary for n-1 fault conditions and credible n-2 conditions (where n-1 and n-2 conditions are the first and second outage conditions as, for example, specified in EREC P2) involving a mixture of fault and planned outages. The Connection Agreement should include details of the relevant outage conditions. It may be necessary under these fault conditions, where the combination of Power Generating Module output, load and through flow levels leads to circuit overloading, to rapidly disconnect or constrain the Power Generating Module.

12.2 Frequency response

12.2.1 All Power Generating Modules should be capable of continuing to operate in parallel with the Distribution Network in accordance with the following:

(a) 47.0 Hz – 47.5 Hz Operation for a period of at least 20 seconds is required each time the frequency is within this range.

(b) 47.5 Hz – 49.0 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range.

(c) 49.0Hz – 51.0 Hz Continuous operation of the Power Generating Module is required.

(d) 51.0 Hz – 51.5 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range.

(e) 51.5 Hz to 52.0 Hz Operation for a period of at least 60 minutes is required each time the frequency is within this range

12.2.2 The requirements above do not apply where:

(a) The G99/NI relay has operated correctly, consistent with the settings agreed pursuant to G99/NI; or

(b) There is manual intervention by the Generator.

12.2.3 With regard to the rate of change of frequency withstand capability, a Power Generating Module shall be capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs$^{-1}$ as measured over a period of 500 ms unless disconnection was triggered by a rate of change of frequency type loss of mains protection or by the Power Generating Module’s own protection system for a co-incident internal fault as detailed in paragraph 10.6.18.
12.2.4 Output power with falling frequency

12.2.4.1 Each **Power Generating Module**, shall be capable of:

(a) continuously maintaining constant **Active Power** output for system frequency changes within the range 50.2 to 49.5 Hz; and

(b) (subject to the provisions of paragraph 12.2.1) maintaining its **Active Power** output at a level not lower than the figure determined by the linear relationships shown in Figure 12.1, that is if the frequency in quasi steady state falls below 49.5 Hz, the power output should not drop by more than pro-rata with frequency, ie the maximum permitted requirement is 100% power at 49.5 Hz falling linearly to 96% power at 47.5 Hz; and if the frequency drops transiently below 49.0 Hz, the power output should not drop by more than pro-rata with frequency, ie the maximum permitted requirement is 100% power at 49.0 Hz falling linearly to 96% power at 47.0 Hz.

(c) The ambient conditions assumed for the requirement to maintain **Active Power** with falling frequency are 10°C, 70% relative humidity and 1013 hPa for gas fired turbine generators, and for ambient temperatures up to and including 25°C for all other **Power Generating Modules**.

![Figure 12.1 Change in Active Power with falling frequency](image)

Figure 12.1 Change in Active Power with falling frequency
For the avoidance of doubt in the case of a **Power Generating Module** using an **Intermittent Power Source** where the power input will not be constant over time, the requirement is that the **Active Power** output shall be independent of system frequency under (a) above and should not drop with system frequency by greater than the amount specified in (b) above.

12.2.5 Limited Frequency Sensitive Mode – Over frequency

12.2.5.1 Each **Power Generating Module** shall be capable of reducing **Active Power** output in response to frequency on the **Total System** when this rises above 50.2 Hz. The **Power Generating Module** shall be capable of operating stably during LFSM-O operation.

(a) The **Power Generating Module** shall be capable of providing **Active Power Frequency Response** with a **Droop** setting in the range 2 – 12%, where the default setting is 4%.

(b) No intentional delay should be programmed to ensure that the initial delay is as short as possible with a maximum of 2 s.

(c) For deviations in frequency beyond 50.9 Hz the measured rate of change of **Active Power** reduction shall exceed 0.5% s\(^{-1}\) of the initial output.

(d) The LFMS-O response shall be reduced when the frequency subsequently falls again and, when to a value less than 50.2 Hz, at least half the proportional increase in **Active Power** shall be achieved in 10 s. For a frequency excursion returning from beyond 50.9 Hz the measured rate of change **Active Power** increase shall exceed 0.5% s\(^{-1}\).

(e) If the reduction in **Active Power** is such that the **Power Generation Module** reaches its **Minimum Stable Operating Level**, it shall continue to operate stably at this level.

12.2.5.2 When the **Power Generating Module** is providing **Limited Frequency Sensitive Mode Over frequency (LFSM-O)** response it shall continue to provide the frequency response until the frequency has returned to or is below 50.2 Hz.

12.2.5.3 Steady state operation below **Minimum Stable Operating Level** is not expected but if system operating conditions cause operation below **Minimum Stable Operating Level** which give rise to operational difficulties then the **Generator** shall be able to return the output of the **Power Generating Module** to an output of not less than the **Minimum Stable Operating Level**.

12.3 Fault Ride Through and Phase Voltage Unbalance

12.3.1 Paragraphs 12.3.1.1 to 12.3.1.7 inclusive set out the **Fault Ride Through**, principles and concepts applicable to **Synchronous Power Generating Modules** and **Power Park Modules**, subject to disturbances from faults on the **Network** up to 140 ms in duration.

12.3.1.1 Each **Synchronous Power Generating Module** and **Power Park Module** is required to remain connected and stable for any balanced and unbalanced fault where the voltage at the **Connection Point** remains on or above the heavy black line shown in Figures 12.2 and 12.3 below.
12.3.1.2 The voltage against time curves defined in Table 12.1 and Table 12.2 express the lower limit (expressed as the ratio of its actual value and its reference 1pu) of the actual course of the phase to phase voltages (or phase to earth voltage in the case of asymmetrical/unbalanced faults) on the network voltage level at the **Connection Point** during a symmetrical or asymmetrical/unbalanced fault, as a function of time before, during and after the fault.

12.3.1.3

![Diagram](image)

Figure 12.2 Voltage against time curve applicable to Type B Synchronous Power Generating Modules

12.3.1.4

Table 12.1 Voltage against time parameters applicable to Type B Synchronous Power Generating Modules

<table>
<thead>
<tr>
<th>Voltage parameters (pu)</th>
<th>Time parameters (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{ret})</td>
<td>0.05</td>
</tr>
<tr>
<td>(t_{clear})</td>
<td>0.15</td>
</tr>
<tr>
<td>(U_{clear})</td>
<td>0.7</td>
</tr>
<tr>
<td>(t_{rec1})</td>
<td>0.15</td>
</tr>
<tr>
<td>(U_{rec1})</td>
<td>0.7</td>
</tr>
<tr>
<td>(t_{rec2})</td>
<td>0.45</td>
</tr>
<tr>
<td>(U_{rec2})</td>
<td>0.9</td>
</tr>
<tr>
<td>(t_{rec3})</td>
<td>0.45</td>
</tr>
</tbody>
</table>
12.3.1.5

Figure 12.31 Voltage against time curve applicable to Type B Power Park Modules

12.3.1.6

Table 12.2 Voltage against time parameters applicable to Type B Power Park Modules

<table>
<thead>
<tr>
<th>Voltage parameters (pu)</th>
<th>Time parameters (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{ret}</td>
<td>0.15</td>
</tr>
<tr>
<td>t_{clear}</td>
<td>0.25</td>
</tr>
<tr>
<td>U_{clear}</td>
<td>0.15</td>
</tr>
<tr>
<td>t_{rec1}</td>
<td>0.25</td>
</tr>
<tr>
<td>U_{rec1}</td>
<td>0.15</td>
</tr>
<tr>
<td>t_{rec2}</td>
<td>0.25</td>
</tr>
<tr>
<td>U_{rec2}</td>
<td>0.85</td>
</tr>
<tr>
<td>t_{rec3}</td>
<td>2.9</td>
</tr>
</tbody>
</table>
12.3.1.7 In addition to the requirements in 12.3.1.2 to 12.3.1.6:

(a) Each **Power Generating Module** shall be capable of satisfying the above requirements at the **Connection Point** when operating at **Registered Capacity** output and maximum leading **Power Factor** as specified in paragraph 12.5.1.

(b) The pre-fault voltage shall be taken to be 1.0 pu and the post fault voltage shall not be less than 0.9 pu.

(c) The **DNO** will publish fault level data under maximum demand conditions in the Statement on Distribution System Charging. To allow a **Generator** to model the **Fault Ride Through** performance of its **Power Generating Modules**, the **DNO** will provide generic fault level values derived from typical cases. Where necessary, on reasonable request the **DNO** will specify the pre-fault and post fault short circuit capacity (in MVA) at the **Connection Point** and will provide additional network data as may reasonably be required for the **Generator** to undertake such study work.

(d) The protection schemes and settings for internal electrical faults shall not jeopardise **Fault Ride Through** performance as specified in Section 12.3. For the avoidance of doubt where an internal fault on the **Power Generating Module** occurs during a **Fault Ride Through** condition, the **Power Generating Module**'s internal protection should trip the module to ensure safety and minimise damage.

(e) After fault clearance the **Power Generating Module** shall have the technical capability to provide at least 90% of its maximum available **Active Power** as quickly as the technology allows and in any event within 5 s of the voltage at the **Connection Point** recovering to within the normal operating range, as specified within the **Connection Agreement** for the particular site. Once **Active Power** output has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

 i. The total active energy delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant.

 ii. The oscillations are adequately damped.

 iii. In the event of power oscillations, **Power Generating Modules** shall retain steady state stability when operating at any point on the **Generator Performance Chart**.

12.3.2 In addition to paragraphs 12.3.1.1 – 12.3.1.7, where it has been specifically agreed between the **DNO** and the **Generator** that a **Power Generating Facility** will contribute to the **DNO**’s **Distribution Network** security (eg for compliance with EREC P2) the **Power Generating Module**s may be required to withstand, without tripping, the effects of a close up three phase fault and the **Phase (Voltage) Unbalance** imposed during the clearance of a close-up phase-to-phase fault, in both cases cleared by the **DNO**’s main protection. The **DNO** will advise the **Generator** in each case of the likely tripping time of the **DNO**’s protection, and for phase-phase faults, the likely value of **Phase (Voltage) Unbalance** during the fault clearance time.
12.3.3 In the case of phase to phase faults on the DNO’s Distribution Network that are cleared by system back-up protection which will be within the plant short time rating on the DNO’s Distribution Network the DNO, on request during the connection process, will advise the Generator of the expected Phase (Voltage) Unbalance.

12.3.4 Other Fault Ride Through Requirements

(a) In the case of a Power Park Module, the requirements in this Section 12.3. do not apply when the Power Park Module is operating at less than 5% of its Registered Capacity or during very high primary energy source conditions when more than 50% of the Generating Units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect Generator’s plant and apparatus.

(b) For the avoidance of doubt the requirements specified in this Section 12.3 do not apply to Power Generating Modules connected to an unhealthy circuit and islanded from the Distribution Network even for delayed auto reclosure times.

12.4 Voltage Limits and Control

12.4.1 Where a Power Generating Module is remote from a Network voltage control point it may be required to withstand voltages outside the normal statutory limits. In these circumstances, the DNO should agree with the Generator the declared voltage and voltage range at the Connection Point. Immunity of the Power Generating Module to voltage changes of ± 10% of the declared voltage is recommended, subject to design appraisal of individual installations.

12.4.2 The connection of a Power Generating Module to the Distribution Network shall be designed in such a way that operation of the Power Generating Module does not adversely affect the voltage profile of and voltage control employed on the Distribution Network. ETR 126 provides DNOs with guidance on active management solutions to overcome voltage control limitations. Section 12.8 of this document details specific control arrangements for Power Generating Modules connecting to the Distribution Network.

12.4.3 Excitation Performance Requirements

12.4.3.1 Each Synchronous Generating Unit within a Synchronous Power Generating Module shall be equipped with a permanent automatic Excitation System that has the capability to provide constant terminal voltage (assuming a high enough Network source impedance to allow the Power Generating Module to achieve this while remaining within its ratings) at a selectable setpoint without instability over the entire operating range of the Synchronous Power Generating Module.

12.4.3.2 Control modes are discussed in more detail in section 12.6.2.

12.4.4 The final responsibility for control of Distribution Network voltage does however remain with the DNO.
12.4.5 Automatic Voltage Control (AVC) schemes employed by the DNO often assume that power flows from parts of the Distribution Network operating at a higher voltage to parts of the Distribution Network operating at lower voltages. Export from Power Generating Modules in excess of the local loads may result in power flows in the reverse direction. In this case AVC referenced to the low voltage side may not operate correctly without an import of Reactive Power and relay settings appropriate to this operating condition. When load current compounding is used with the AVC and the penetration level of Power Generating Modules becomes significant compared to normal loads, it may be necessary to switch any compounding out of service.

12.4.6 Power Generating Modules can cause problems if connected to networks employing AVC schemes which use negative reactance compounding and line drop compensation due to changes in Active Power and Reactive Power flows. ETR 126 provides guidance on connecting generation to such networks using techniques such as removing the generation circuit from the AVC scheme using cancellation CTs.

12.5 Reactive Capability

12.5.1 When supplying Registered Capacity all Power Generating Modules shall be capable of continuous operation at any points between the limits of 0.98 Power Factor lagging (generating) and 0.95 Power Factor leading (absorbing) at the Connection Point for the Power Generating Facility and as agreed with the DNO.

12.5.2 At Active Power output levels other than Registered Capacity, all Synchronous Power Generating Modules or Generating Units within a Power Park Module shall be capable of continuous operation at any point between the Reactive Power capability limits identified on the Generator Performance Chart. For the avoidance of doubt, where the Generator’s Installation involves Power Generating Modules and demand the entire Generator’s Installation shall be considered to be a Power Generating Facility and shall be capable of delivering Reactive Power performance at the Connection Point. However, where complex Generator’s Installations involve Power Generating Modules and demand, the Generator may submit calculations to support compliance.

12.5.3 Where the Power Generating Module is contained within a larger installation comprising both demand and generation the DNO will advise the Generator if it is more appropriate for the Power Factor requirements to be specified for the installation, rather than the Power Generating Module, at the Connection Point, and what those requirements are.
12.5.4 Reactive Capability of Power Generating Modules

12.5.4.1 Figure 12.4 sets out the Reactive Power capability at the Connection Point for Power Generating Modules connecting to the Distribution Network to which the Power Generating Facility will be tested in the Compliance Testing and Reporting section of this document.

![Diagram of Generator Performance Chart at Connection Point - Power Generating Facilities](image)

Figure 12.4 Generator Performance Chart at Connection Point - Power Generating Facilities

- a) Point A is the maximum absorbing Reactive Power capability at 15% Registered Capacity (voltage control);
- b) Point B is the maximum producing Reactive Power capability at 15% Registered Capacity (voltage control);
- c) Point C is the maximum absorbing Reactive Power capability at 100% Registered Capacity (voltage control);
- d) Point D is the maximum producing Reactive Power capability at 100% Registered Capacity (voltage control);
- e) Point E is the Power Factor limit of 0.95 absorbing at 100% Registered Capacity;
- f) Point F is the Power Factor limit of 0.98 producing at 100% Registered Capacity;
- g) Point G is the Reactive Power limit of 0 kVAR at 0% Registered Capacity;
- h) Points A, B, C & D i.e. reactive capabilities are defined by the capability declared by the Generator following synchronisation. The Power Generating Module is also required to declare its reactive capability at 0% Registered Capacity.
- i) The envelope enclosed by E, F and G describes the minimum reactive capability requirement of the Power Generating Module.
12.5.5 A Power Generating Facility shall maintain the voltage at the Connection Point within its reactive capability power limits as outlined in paragraph 12.5.2 and the statutory voltage limits as described in paragraph CC5.3 of the Distribution Code.

12.6 Fast Fault Current Injection

12.6.1 Fast Fault Current injection is necessary to support the Total System during a fault on the Transmission System. The design of Fast Fault Current injection is tailored to this, and does not relate directly to faults on the Distribution Network, not least as those will tend to have longer clearing times than those of the Transmission System for which Fast Fault Current injection is designed. In this Section 12.6 the faults referred to are Transmission System faults which clear within 140 ms and which will be seen in the Distribution Network as a voltage depression. For this section 12.6 voltage and current quantities are assumed to be positive phase sequence values.

12.6.2 For any balanced fault on the Transmission System which results in the voltage at the Connection Point falling below 0.9 pu each Power Park Module shall, unless otherwise agreed with the DNO, be required to provide reactive current to the Distribution Network. The reactive current response of the Power Park Module shall attempt to control the voltage back towards the nominal voltage, and should be at least proportional to the voltage dip. The reactive current response shall be supplied within the rating of the Power Park Module, with a rise time no greater than 100 ms and a settling time no greater than 300 ms. The provision of reactive current shall continue until the system voltage recovers to within the normal operational range as specified in Distribution Code CC5.3.

12.7 Operational monitoring

12.7.1 At each Power Generating Facility the RTU type as described in Annex B7 will be specified in the connection offer and the Generator will be advised of which variant is applicable to their Power Generating Facility during the application process. The DNO will inform the Generator if additional specific data is required.

12.7.2 Generators shall in respect of their Power Generating Facilities comply with the SCADA signal requirements set out in this paragraph 12.7 and, in addition, such other SCADA signal requirements as the DNO may require because of network reasons, which will be specified prior to entry into the Connection Agreement:

12.7.3 The DNO shall issue control instructions by means of the SCADA signals or, in the event of a SCADA malfunction, such other means as are determined by the DNO in consultation with the user.

12.7.4 The Generator shall acknowledge, where relevant, receipt of a control instruction issued under this paragraph 12.7 and shall comply promptly with the control instruction.
12.7.5 The following signal format shall be used where required by the particular connection:

 (a) Analogue signals: 4 to 20 mA
 (b) Digital pulses from the DNO: 24 V DC
 (c) Digital input from the Generator: 0 and 24 V DC

The use of any additional signal formats, and the analogue and digital signal requirements for connecting Generators, are detailed in Annex B.8.

12.8 Control Modes

12.8.1 All Power Generating Facilities which are connecting to the Distribution Network shall be capable of providing three Reactive Power control modes: Power Factor control, Voltage control and Emergency Voltage control. All Power Generating Facilities shall operate in the control mode instructed by the DNO. Other Voltage control schemes may be possible, but agreement between the Generator and the DNO shall be reached at the application stage for connection about their suitability. Voltage control schemes based upon equipment located on the DNO’s side of the connection may be possible, but such schemes are considered special, and the details, responsibilities and cost schedule shall be agreed between the Generator and the DNO in the Connection Agreement.

12.8.2 Per Unit values quoted here use the following base values:

\[\begin{align*}
 \text{kVA}_{\text{base}} &= \text{Registered Capacity} \\
 V_{\text{base}} &= \text{Voltage at Connection Point}
\end{align*} \]

12.8.3 All Power Generating Facilities shall be fitted with a device capable of setting the Power Factor of the Power Generating Facility within the relevant range, as set out in 12.5.

12.8.4 Speed of response

12.8.4.1 All Power Generating Facilities shall be fitted with a fast acting control system capable of being switched between voltage control mode and Power Factor control mode within a voltage band as specified within the Connection Agreement for the particular site, and in any case within statutory limits as specified under paragraph CC5.3 of the Distribution Code. If the voltage is outside the specified limit the Power Factor control shall revert to Emergency voltage control as described in section 12.8.9 of this document. The control of voltage and Power Factor shall ensure stable operation over the entire operating range of the Power Generating Facility. In the event that action by the Power Generating Facility Active Power and Reactive Power control functions is unable to achieve a sustained voltage within the statutory limits, the Power Generating Facility shall detect and remain connected to the Distribution Network unless disconnected directly by a protection operation.

12.8.4.2 The response times for Power Generating Facilities are split into categories based on the voltage at the Connection Point and the Registered Capacity.
12.8.5 **Power Generating Facilities** \(\geq 1 \text{ MW} \) and connected at 33 kV

12.8.5.1 For **Power Generating Facilities** connected to the **Distribution Network** at 33 kV with a **Registered Capacity** greater than or equal to 1 MW, fast acting with regards to **Reactive Power** control response is considered as being:

- The speed of response of the control system following a change in the phase angle set-point or voltage set-point at the **Connection Point** by the **DNO** via SCADA shall be such that the **Power Generating Facility** shall achieve 90% of its steady-state **Reactive Power** response within 1 s.

- The change in **Reactive Power** commences within 0.2 s of the application of the step injection

- Any oscillations settle to within 5% of the change in steady state **Reactive Power** within 2 s of the step injection.

- The final steady state reactive value is achieved within 5 s of the step injection. Steady state is deemed to have occurred when VAr oscillations settle within \(\pm 0.02\text{pu} \) of the new **Reactive Power** target.

12.8.6 **Power Generating Facilities** \(< 1 \text{ MW} \) or connected below 33 kV

12.8.6.1 For **Power Generating Facilities** connected to the **Distribution Network** below 33 kV or with a **Registered Capacity** less than 1 MW, fast acting with regards to **Reactive Power** control response is considered as being:

- The speed of response of the control system following a change in the phase angle set-point or voltage set-point at the **Connection Point** by the **DNO** via SCADA shall be such that the **Power Generating Facility** shall achieve 90% of its steady-state **Reactive Power** response within 5 s.

- The change in **Reactive Power** commences within 1 s of the application of the step injection

- The final steady state reactive value is achieved within 10 s of the step injection. Steady state is deemed to have occurred when VAr oscillations settle within \(\pm 0.02\text{pu} \) of the new **Reactive Power** target.

12.8.7 **Power Factor** control mode

12.8.7.1 Whilst the **Power Generating Facility** is operating in **Power Factor** control mode, it will be required to perform within the envelope EFG of Figure 12.4 for all **Power Generating Modules**. The **Power Generating Modules** shall be fitted with a fast acting control system capable of operating within the envelopes described above, in response to a Power Factor Set-Point sent from the **DNO**. The Power Factor Set-Point shall be adjustable over the minimum range of 0.95 absorbing to 0.98 producing.
12.8.8 Voltage Control Mode

12.8.8.1 Whilst the Power Generating Facility is operating in voltage control mode, it will be required to perform within the envelope GACDB of Figure 12.4 for all Power Generating Modules. As a minimum requirement, the Power Generating Modules will be required to operate within the envelope EFG of Figure 12.4.

12.8.8.2 The Power Generating Facility is required to operate in voltage control with Slope and respond as follows:

12.8.8.3 The voltage control system of the Power Generating Modules should have a reactive Slope characteristic which shall be adjustable over a range of between 2 - 7% with a resolution of 0.5% (this shall be set at 3% unless otherwise instructed by the DNO). The Power Generating Module shall demonstrate the ability to operate on a 3% reactive Slope characteristic.

12.8.8.4 The system voltage shall be determined by calculating the average of the 3 line voltages measured at the Connection Point.

12.8.8.5 Figure 12.5 illustrates how a decrease in the system voltage of 0.03 pu would move the Power Generating Facility from its maximum leading Reactive Power capability (Qmin) to its maximum lagging Reactive Power capability (Qmax). When the system voltage is equal to the voltage set-point the Reactive Power output should be zero at unity Power Factor.

12.8.8.6 A new voltage set-point instruction would move the Slope along the y-axis so that the y-intercept occurs at the new voltage set-point.

![Figure 12.5 Voltage control with Slope](image-url)
12.8.9 Emergency Voltage Control

12.8.9.1 **Power Generating Facilities** are required to be capable of stable operation in both **Power Factor** and voltage control modes. Where a **Power Generating Facility** is operating in **Power Factor** control mode and one line voltage at the **Connection Point** exceeds 1.05 pu at the upper limit or drops below 0.95 pu at the lower limit then the **Power Generating Facility** shall perform in emergency voltage control as detailed below:

12.8.9.2 In emergency voltage control the system voltage shall be measured as the line voltage which most exceeds the limits stated above.

12.8.9.3 On entering emergency voltage control the **Power Generating Modules** shall revert to voltage control with **Slope** with a set-point of 1.05 pu at the upper limit or 0.95 pu at the lower limit. The **Power Generating Facility** shall remain in emergency voltage control with a voltage set-point of 1.05 pu or 0.95 pu until either of the below criteria is met, at which point the **Power Generating Facility** will revert back to **Power Factor** control mode at the last instructed Power Factor set-point:

- A **Power Factor** control select signal is received from the DNO.
- The **Connection Point** voltage drops below 1.04 pu at the upper limit or exceeds 0.96 pu at the lower limit.

12.8.9.4 Where necessary, the **Power Generating Facility** shall maintain Qmin or Qmax until either of the above criteria is met.

12.8.9.5 Regarding SCADA indications, when the **Power Generating Facility** enters emergency voltage control mode, the control mode indication shall switch to ‘Voltage Control’ and operate the ‘Voltage Auto Control’ /‘Emergency Voltage Control’ Alarm. Examples of the expected behaviour are given in Annex B.10.

12.9 Measurement devices

12.9.1 This section details accuracy requirements for Current Transformers (CT), Voltage Transformers (VT) and transducers used to determine the power flow at the **Connection Point** for a **Power Generating Facility**. All **Generators** will need to take these measurements as part of their **Reactive Power** control system and some may also need to report these measurements to the **DNO** as part of their SCADA requirement.

12.9.2 These requirements only apply to measurement devices used as part of the **Reactive Power** control system or SCADA system. This should not replace or supersede requirements in relevant metering codes or protection standards.

12.9.3 Table 1 lists the required class of CT, VT and transducer for **Power Generating Facilities** connected at different voltages.

12.9.4 Current Transformers should meet or exceed the listed class accuracy as per IEC 61869-2.

12.9.5 Voltage Transformers should meet or exceed the listed class accuracy as per IEC 61869-3.

12.9.6 Transducers should meet or exceed the listed class accuracy for **Active Power** and **Reactive Power** measurements as per IEC 60688.
Table 12.3 - Measurement Device Accuracy Class

<table>
<thead>
<tr>
<th>Connection Point</th>
<th>VT</th>
<th>CT</th>
<th>Transducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 V</td>
<td>N/A(^{11})</td>
<td>0.5 s</td>
<td>0.5</td>
</tr>
<tr>
<td>6.6 kV</td>
<td>0.2</td>
<td>0.2 s(^{12})</td>
<td>0.2</td>
</tr>
<tr>
<td>11 kV</td>
<td>0.2</td>
<td>0.2 s(^{12})</td>
<td>0.2</td>
</tr>
<tr>
<td>33 kV</td>
<td>0.2</td>
<td>0.2 s</td>
<td>0.2</td>
</tr>
</tbody>
</table>

\(^{11}\) LV connected **Power Generating Facilities** shall take a direct voltage measurement to their transducer. Use of a VT is not acceptable.

\(^{12}\) On existing HV Customer sites. Use of existing 0.5 CTs would be acceptable.
13 Type C and Type D Power Generating Module Technical Requirements

13.1 Power Generating Module Performance and Control Requirements

13.1.1 The requirements of this Section 13 do not apply in full to:

(a) Power Generation Facilities that are designed and installed for infrequent short term parallel operation only; or

(b) Electricity Storage Power Generation Modules within the Power Generating Facility.

Refer to Annex A.4 for details.

13.1.2 The Active Power output of a Power Generating Module should not be affected by voltage changes within the statutory limits declared by the DNO in accordance with the ESQCR (NI).

13.1.3 Power Generating Modules shall be capable of adjusting the Active Power setpoint in accordance with instructions issued by the DNO.

13.1.3.1 The DNO is currently are developing active network management approaches and there is no common standard for communication interfaces.

13.1.3.2 Protocols currently in use between the DNO and Generators include simple current loop; DNP3 and IEC 61850.

13.1.3.3 The DNO will discuss and agree with the Generator for each Power Generating Facility the protocol to be used, including how any risks of maloperation etc are to be managed.

13.1.3.4 By default if nothing it specified by the DNO then a simple hard-wired current loop interface should be provided where a 4 mA to 20 mA DC signal corresponding to 0 pu to 1.0 pu of Registered Capacity Active Power.

13.1.3.5 The Active Power reduction will be either between 1.0 pu of Registered Capacity Active Power and zero, or between 1.0 pu of Registered Capacity Active Power and Minimum Stable Operating Level. In the latter case the Generator will agree with the DNO how zero output can be achieved.

13.1.3.6 If the DNO wishes to make use of the facility to reduce Active Power output the DNO will agree with the Generator the communication interface and other necessary equipment that will be needed.

13.1.4 Not Used

13.1.5 Each item of a Power Generating Module and its associated control equipment shall be designed for stable operation in parallel with the Distribution Network.

13.1.6 Load flow and System Stability studies may be necessary to determine any output constraints or post fault actions necessary for n-1 fault conditions and credible n-2 conditions (where n-1 and n-2 conditions are the first and second outage conditions as, for example, specified in EREC P2) involving a mixture of fault and planned outages. The Connection Agreement should include details of the relevant outage conditions. It may be necessary under these fault conditions, where the combination of Power Generating Module output, load and through flow levels leads to circuit overloading, to rapidly disconnect or constrain the Power Generating Module.
13.2 Frequency response

13.2.1 All Power Generating Modules should be capable of continuing to operate in parallel with the Distribution Network in accordance with the following:

(a) 47.0 Hz – 47.5 Hz Operation for a period of at least 20 seconds is required each time the frequency is within this range.

(b) 47.5 Hz – 49.0 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range.

(c) 49.0 Hz – 51.0 Hz Continuous operation of the Power Generating Module is required.

(d) 51.0 Hz – 51.5 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range.

(e) 51.5 Hz to 52.0 Hz Operation for a period of at least 60 minutes is required each time the frequency is within this range.

The requirements above do not apply where:

(a) The interface protection has operated correctly, consistent with the settings agreed pursuant to G99/NI; or

(b) There is manual intervention by the Generator.

13.2.2 With regard to the rate of change of frequency withstand capability, a Power Generating Module shall be capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs\(^{-1}\) as measured over a period of 500 ms unless disconnection was triggered by a rate of change of frequency type loss of mains protection or by the Power Generating Module’s own protection system for a co-incident internal fault as detailed in paragraph 10.6.18.
13.2.3 Output power with falling frequency

13.2.3.1 Each Power Generating Module, shall be capable of:

(a) continuously maintaining constant Active Power output for system frequency changes within the range 50.2 to 49.5 Hz; and

(b) (subject to the provisions of paragraph 13.2.1) maintaining its Active Power output at a level not lower than the figure determined by the linear relationships shown in Figure 13.1, that is if the frequency in quasi steady state falls below 49.5 Hz, the power output should not drop by more than pro-rata with frequency, ie the maximum permitted requirement is 100% power at 49.5 Hz falling linearly to 96% power at 47.5 Hz; and if the frequency drops transiently below 49.0 Hz, the power output should not drop by more than pro-rata with frequency, ie the maximum permitted requirement is 100% power at 49.0 Hz falling linearly to 96% power at 47.0 Hz.

(c) The ambient conditions assumed for the requirement to maintain Active Power with falling frequency are 10°C, 70% relative humidity and 1013 hPa for gas fired turbine generators, and for ambient temperatures up to and including 25°C for all other Power Generating Modules.

![Figure 13.1 Change in Active Power with falling frequency](image)

13.2.3.2 For the avoidance of doubt in the case of a Power Generating Module using an Intermittent Power Source where the power input will not be constant over time, the requirement is that the Active Power output shall be independent of system frequency under (a) above and should not drop with system frequency by greater than the amount specified in (b) above.
13.2.4 Limited Frequency Sensitive Mode – Over frequency

13.2.4.1 Each **Power Generating Module** shall be capable of reducing **Active Power** output in response to frequency on the **Total System** when this rises above 50.2 Hz. The **Power Generating Module** shall be capable of operating stably during **LFSM-O** operation.

(a) The **Power Generating Module** shall be capable of providing **Active Power Frequency Response** with a **Droop** setting in the range 2 – 12%, where the default setting is 4%.

(b) No intentional delay should be programmed to ensure the initial delay is as short as possible with a maximum of 2 s.

If the reduction in **Active Power** is such that the **Power Generation Module** reaches its **Minimum Stable Operating Level**, it shall continue to operate stably at this level.

13.2.4.2 When the **Power Generating Module** is providing **Limited Frequency Sensitive Mode Over frequency (LFSM-O)** response it shall continue to provide the frequency response until the frequency has returned to or below 50.2 Hz.

13.2.4.3 Steady state operation below **Minimum Stable Operating Level** is not expected but if system operating conditions cause operation below **Minimum Stable Operating Level** which give rise to operational difficulties then the **Generator** shall be able to return the output of the **Power Generating Module** to an output of not less than the **Minimum Stable Operating Level**.

13.2.5 Limited Frequency Sensitive Mode – Under frequency (LFSM-U)

13.2.5.1 If a **Power Generating Module**, has been contracted to operate in **Limited Frequency Sensitive Mode – Under Frequency** the requirements of **LFSM-U** shall apply when frequency falls below 49.5 Hz. Each **Power Generating Module** shall be capable of increasing **Active Power** output in response to system frequency when this falls below 49.5 Hz with a **Droop** setting of 4%. It is not anticipated **Power Generating Modules** are operated in an inefficient mode to facilitate delivery of **LFSM-U** response, but any inherent capability should be made available without undue delay. The **Power Generating Module** shall be capable of stable operation during **LFSM-U Mode**.

(a) This requirement only applies if the **Power Generating Module** has headroom and the ability to increase **Active Power** output. In the case of a **Power Park Module** the requirements shall be reduced pro-rata to the amount of **Generating Units** in service and available to generate.

(b) As much as possible of the proportional increase in **Active Power** output shall result from the frequency control device (or speed governor) action and shall be achieved for frequencies below 49.5 Hz. The **Power Generating Module** shall be capable of initiating a power frequency response with minimal delay. If the delay exceeds 2 s the **Generator** shall justify the delay, providing technical evidence to the **DNO** who will pass this evidence to the **TSO**. The actual delivery of **Active Power Frequency Response** in **LFSM-U** mode shall take into account
The ambient conditions when the response is to be triggered.

The operating conditions of the **Power Generating Module**. In particular limitations on operation near **Registered Capacity** at low frequencies.

The availability of primary energy sources.

(d) In **LFSM-U Mode** the **Power Generating Module** shall be capable of providing a power increase up to its **Registered Capacity** (based on the number of **Generating Units** in service at that point in time).

13.2.6 Frequency Sensitive Mode – (FSM)

13.2.6.1 Each **Power Generating Module** shall be fitted with a fast acting proportional frequency control device (or turbine speed governor) and unit load controller or equivalent control device to provide frequency response under normal operational conditions. In the case of a **Power Park Module** the frequency or speed control device(s) may be on the **Power Park Module** or on each individual **Generating Unit** or be a combination of both.

13.2.6.2 The frequency control device (or speed governor) in co-ordination with other control devices shall control each **Power Generating Module Active Power** output with stability over the entire operating range of the **Power Generating Module**.

13.2.6.3 Whilst responding to frequency deviations the **Power Generating Module** shall ramp at the Frequency Response Ramp Rate, this ramp rate shall be the maximum ramp of the **Generating Units** and as a minimum shall be:

(a) Primary response capability of the **Power Generating Module** (Available by 5 s and sustained to 15 s): 60% of expected MW Output change value based on **Droop** characteristic. (This is an absolute minimum and if **Generating Units** can offer a larger response within 5 seconds they should do so).

(b) Secondary response capability of the **Power Generating Module** (Available by 15 s and sustained to 90 s): 100% of expected MW Output change value based on **Droop** characteristic. (This is an absolute minimum and if **Generating Units** can offer a larger response within 15 seconds they should do so).

13.2.6.4 It should be noted that if the **Power Generating Module** has received a MW set point and an Emergency Action ‘ON’ digital signal from the TSO, the **Power Generating Module(s)** should not increase its **Active Power** Output beyond the figure that has been instructed in response to low frequency deviations, however the **Power Generating Module(s)** shall respond to high frequency deviations and reduce **Active Power** Output according to the **Droop** when Emergency Action ‘ON’ digital signal is being received via SCADA. This mode of operation is different from % MW Curtailment in which the **Power Generating Module(s)** shall **always** respond to high and low frequency deviations and be operating on the required **Droop** setting.
13.2.6.5 Under normal operating conditions, the **Power Generating Module(s)** % MW Curtailment Controller is OFF (digital signal sent via the TSO SCADA). The frequency response of the **Power Generating Module(s)** will be based on **Registered Capacity**. Therefore whilst the **Power Generating Module(s)** is operating on a nominal **Droop** characteristic of 3.7%, a 27% change of **MW Output** will occur for a 0.5 Hz frequency deviation.

13.2.6.6 The % MW Curtailment Set Point figure (50 – 100%) that the TSO send to the **Power Generating Facility** via the TSO SCADA will be based on the Maximum Instantaneous Output. The frequency response of the **Power Generating Module(s)** will be based on **Registered Capacity**. Therefore, whilst the **Power Generating Module(s)** is operating on a nominal **Droop** characteristic of 4%, a 25% change of **MW Output** will occur for a 0.5 Hz frequency deviation.

13.2.6.7 Whilst the **Power Generating Module(s)** % MW Curtailment Control is ON a 49.985 Hz - 50.015 Hz **Frequency Response Deadband** exists in which the **Power Generating Module(s)** is not required to provide frequency control to the system.

13.2.6.8 **Power Generating Modules** shall also meet the following minimum requirements:

(a) **Power Generating Modules** shall be capable of providing **Active Power Frequency Response** in accordance with the performance characteristic shown in Figure 13.2 and parameters in Table 13.1.

![Figure 13.2](attachment:image.png)

Figure 13.2 – Frequency Sensitive Mode capability of Power Generating Modules and Power Park Modules
Table 13.1 – Parameters for Active Power Frequency Response in Frequency Sensitivity Mode including the mathematical expressions in Figure 13.2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal system frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Response Insensitivity in mHz ($</td>
<td>\Delta f_i</td>
</tr>
<tr>
<td>Frequency Response Insensitivity as a percentage of nominal frequency ($\frac{</td>
<td>\Delta f_i</td>
</tr>
<tr>
<td>Frequency Response Deadband in mHz</td>
<td>+/-15mHz*</td>
</tr>
<tr>
<td>Droop (%)</td>
<td>4%*</td>
</tr>
</tbody>
</table>

* In addition to the individual requirements for **Frequency Response Insensitivity** and **Frequency Response Deadband** and as per Annex V of the System Operating Guidelines (SOGL), the maximum combined effect of **Frequency Response Insensitivity** and **Frequency Response Deadband** cannot exceed a value of +/-15mHz.

+ Default Droop is 4%, but can be agreed with the DNO as applicable to specific **Power Generating Module** technology to be between 2 and 12%.

(b) In satisfying the performance requirements specified in paragraph 13.2.6.1 **Generators** in respect of each **Power Generating Module** should be aware:-

i. in the case of overfrequency, the **Active Power Frequency Response** is limited by the **Minimum Stable Operating Level**,
ii. in the case of underfrequency, the **Active Power Frequency Response** is limited by the **Registered Capacity**,
iii. the actual delivery of **Active Power Frequency Response** depends on the operating and ambient conditions of the **Power Generating Module** when this response is triggered, in particular limitations on operation near **Registered Capacity** at low frequencies as specified in 13.2.5 and available primary energy sources.
iv. The frequency control device (or speed governor) shall also be capable of being set so that it operates with an overall speed **Droop** of between 2 – 12%. The **Frequency Response Deadband** and **Droop** shall be able to be reset at any time and as required by the DNO.
(c) In the event of a frequency step change, each Power Generating Module shall be capable of activating full and stable Active Power Frequency Response (without undue power oscillations), in accordance with, but not limited by, the performance characteristic shown in Figure 13.3 and parameters in Table 13.2.

\[
\frac{\Delta P}{P_{\text{max}}} = \begin{cases}
0.125 & \text{for } t_1 = 2 \text{ s} \\
0.100 & \text{for } t_2 = 5 \text{ s} \\
0.075 & \text{for } \Delta P_1 \text{ and } t_2 \text{ being specified in Table 13.2. } t_1 \text{ is the initial delay. } t_2 \text{ is the time for full activation.}
\end{cases}
\]

\[P_{\text{max}}\] is the Registered Capacity to which \(\Delta P\) relates. \(\Delta P\) is the change in Active Power output from the Power Generating Module. The Power Generating Module has to provide Active Power output \(\Delta P\) up to the point \(\Delta P_1\) in accordance with the times \(t_1\) and \(t_2\) with the values of \(\Delta P_1\), \(t_1\), and \(t_2\) being specified in Table 13.2. \(t_1\) is the initial delay. \(t_2\) is the time for full activation.

* \(t_1 = 0\) s for Power Generating Modules without Inertia

Figure 13.3 Active Power Frequency Response capability
Table 13.2 – Parameters for full activation of Active Power Frequency Response resulting from a frequency step change.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active power as a percentage of Registered Capacity (frequency response range) (\left</td>
<td>\frac{\Delta P_{1}}{P_{\text{max}}} \right</td>
</tr>
<tr>
<td>Maximum admissible initial delay (t_{1}) for Power Generating Modules with inertia</td>
<td>2 s</td>
</tr>
<tr>
<td>Maximum admissible initial delay (t_{1}) for Power Generating Modules which do not contribute to system inertia</td>
<td>0* s</td>
</tr>
<tr>
<td>Activation time (t_{2})</td>
<td>5 s</td>
</tr>
</tbody>
</table>

* No time delay other than those inherent in the design of the frequency response system

Table 13.2 also includes the mathematical expressions used in Figure 13.3.

(d) The initial activation of **Active Power** primary frequency response shall not be unduly delayed. For **Power Generating Modules** with inertia the delay in initial **Active Power Frequency Response** shall not be greater than 2 s. For **Power Generating Modules** without inertia the delay in initial **Active Power Frequency Response** shall be 0 s (i.e., there shall be no time delay other than those inherent in the design of the frequency response system). If the **Generator** cannot meet this requirement the **Generator** shall provide technical evidence to the **DNO**, who will pass this evidence to the **TSO**, demonstrating why a longer time is needed for the initial activation of **Active Power Frequency Response**.

(e) with regard to disconnection due to underfrequency, **Generators** responsible for **Power Generating Modules** capable of acting as a load, including but not limited to pumped-storage **Power Generating Modules**, shall be capable of disconnecting their load in case of underfrequency which will be agreed with the **DNO**. For the avoidance of doubt this requirement does not apply to station auxiliary supplies.
13.3 Fault Ride Through

13.3.1 Paragraphs 13.3.1.1 to 13.3.1.6 inclusive set out the Fault Ride Through, principles and concepts applicable to Synchronous Power Generating Modules and Power Park Modules, subject to disturbances from faults on the Network up to 140 ms in duration.

13.3.1.1 Each Synchronous Power Generating Module and Power Park Module is required to remain connected and stable for any balanced and unbalanced fault where the voltage at the Connection Point remains on or above the heavy black line shown in Figures 13.4 and Figure 3.5 below.

13.3.1.2 The voltage against time curves defined in Table 13.3 and Table 13.4 expresses the lower limit (expressed as the ratio of its actual value and its reference 1 pu) of the actual course of the phase to phase voltages (or phase to earth voltage in the case of asymmetrical/unbalanced faults) on the network voltage level at Connection Point during a symmetrical or asymmetrical/unbalanced fault, as a function of time before, during and after the fault.

13.3.1.3

![Figure 13.4 Voltage against time curve applicable to Type C and Type D Synchronous Power Generating Modules connected below 110 kV](image)

NOT TO SCALE

Figure 13.4 Voltage against time curve applicable to Type C and Type D Synchronous Power Generating Modules connected below 110 kV
13.3.1.4

Table 13.3 Voltage against time parameters applicable to Type C and D Synchronous Power Generating Modules connected below 110 kV

<table>
<thead>
<tr>
<th>Voltage parameters (pu)</th>
<th>Time parameters (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{ret}</td>
<td>0.05</td>
</tr>
<tr>
<td>U_{clear}</td>
<td>0.7</td>
</tr>
<tr>
<td>U_{rec1}</td>
<td>0.7</td>
</tr>
<tr>
<td>U_{rec2}</td>
<td>0.9</td>
</tr>
</tbody>
</table>

13.3.1.5
Not used

13.3.1.6
Not used

13.3.1.7

Figure 13.5 - Voltage against time curve applicable to Type C and Type D Power Park Modules connected below 110 kV
13.3.1.8

Table 13.4 Voltage against time parameters applicable to Type C and Type D Power Park Modules connected below 110 kV

<table>
<thead>
<tr>
<th>Voltage parameters (pu)</th>
<th>Time parameters (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{ret}</td>
<td>0.15</td>
</tr>
<tr>
<td>t_{clear}</td>
<td>0.25</td>
</tr>
<tr>
<td>U_{clear}</td>
<td>0.15</td>
</tr>
<tr>
<td>t_{rec1}</td>
<td>0.25</td>
</tr>
<tr>
<td>U_{rec1}</td>
<td>0.15</td>
</tr>
<tr>
<td>t_{rec2}</td>
<td>0.25</td>
</tr>
<tr>
<td>U_{rec2}</td>
<td>0.85</td>
</tr>
<tr>
<td>t_{rec3}</td>
<td>2.9</td>
</tr>
</tbody>
</table>

13.3.1.9 Not used

13.3.1.10 Not used

13.3.1.11 In addition to the requirements in 13.3.1.3 to 13.3.1.10:

(a) Each Power Generating Module shall be capable of satisfying the above requirements at the Connection Point when operating at Registered Capacity output and maximum leading Power Factor as specified in paragraph 13.5.1.

(b) The pre-fault voltage shall be taken to be 1.0 pu and the post fault voltage shall not be less than 0.9 pu.

(c) The DNO will publish fault level data under maximum demand conditions in the Statement on Distribution System Capacity. To allow a Generator to model the Fault Ride Through performance of its Power Generating Modules, the DNO will provide generic fault level values derived from typical cases. Where necessary, on reasonable request the DNO will specify the pre-fault and post fault short circuit capacity (in MVA) at the Connection Point and will provide additional network data as may reasonably be required for the Generator to undertake such study work.

(d) The protection schemes and settings for internal electrical faults shall not jeopardise Fault Ride Through performance as specified in paragraphs 13.3. For the avoidance of doubt where an internal fault on the Power Generating Module occurs during a Fault Ride Through condition, the Power Generating Module’s internal protection should trip the module to ensure safety and minimise damage.

(e) In addition to remaining connected to the Distribution Network, the Power Generating Module shall have the technical capability to provide the following functions:
(i) During voltage dips, the **Power Generating Module** shall provide **Active Power** in proportion to retained voltage and provide **Reactive Power** to the **Distribution Network**. The provision of **Reactive Power** shall continue until the distribution voltage recovers to within the normal operational range, and in any case within the statutory limits as specified in the **Distribution Code** paragraph CC5.3, or for at least 500 ms, whichever is the sooner. The **Power Generating Module** may use all or any available **Reactive Power** sources, including installed statcoms or SVCs, when providing reactive support during voltage dips.

(ii) For voltage dips greater than 140 ms, the **Power Generating Module** shall provide at least 90% of its maximum available **Active Power** within 1 second of the voltage at the **Connection Point** recovering to the normal operating range for the voltage at which it is connected.

(iii) During and after faults, priority shall always be given to the **Active Power** response as defined in paragraphs (i) and (ii) above. The reactive current response of the **Power Generating Module** shall attempt to control the voltage back towards the voltage at the **Connection Point** and should be at least proportional to the voltage dip.

(iv) The **Power Generating Module** shall be capable of providing its transient reactive response irrespective of the reactive control mode in which it was operating at the time of the voltage dip. The **Power Generating Module** shall revert to its pre-fault reactive control mode and set point within 500 ms of the voltage at which the **Power Generating Module** is connected, recovering to its normal operating range.

(v) The **DNO** may seek to reduce the magnitude of the dynamic reactive response of the **Power Generating Module** if it is found to cause over-voltages on the **Distribution Network**. In such a case, the **DNO** will make a formal request to the **Generator**. The **Generator** and the **DNO** shall seek to agree on the required changes, and the **Generator** shall formally confirm that any requested changes have been implemented within 120 days of receiving the formal request from the **DNO**.

13.3.2 In addition to paragraphs 13.3.1.1 – 13.3.1.11 where it has been specifically agreed between the **DNO** and the **Generator** that a **Power Generating Facility** will contribute to the **DNO’s Distribution Network** security, (eg for compliance with EREC P2) the **Power Generating Module(s)** may be required to withstand, without tripping, the effects of a close up three phase fault and the **Phase (Voltage) Unbalance** imposed during the clearance of a close-up phase-to-phase fault, in both cases cleared by the **DNO’s main protection**. The **DNO** will advise the **Generator** in each case of the likely tripping time of the **DNO’s protection**, and for phase-phase faults, the likely value of **Phase (Voltage) Unbalance** during the fault clearance time.
13.3.3 In the case of phase to phase faults on the DNO’s Distribution Network that are cleared by system back-up protection which will be within the plant short time rating on the DNO’s Distribution Network the DNO, on request during the connection process, will advise the Generator of the expected Phase (Voltage) Unbalance.

13.3.4 Other Fault Ride Through Requirements

(a) In the case of a Power Park Module, the requirements in paragraph 13.3 do not apply when the Power Park Module is operating at less than 5% of its Registered Capacity or during very high primary energy source conditions when more than 50% of the Generating Units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect Generator's plant and apparatus.

(b) For the avoidance of doubt the requirements specified in this Section 13.3 do not apply to Power Generating Modules connected to an unhealthy circuit and islanded from the Distribution Network even for delayed auto reclosure times.

(c) Type D Power Generating Modules should be fitted with a Power System Stabiliser.

13.4 Voltage Limits and Control

13.4.1 Where a Power Generating Module is remote from a Network voltage control point it may be required to withstand voltages outside the normal statutory limits. In these circumstances, the DNO should agree with the Generator the declared voltage and voltage range at the Connection Point. Immunity of the Power Generating Module to voltage changes of ± 10% of the declared voltage is recommended, but is mandatory for Type D Power Generating Modules, subject to design appraisal of individual installations.

13.4.2 The connection of a Power Generating Module to the Distribution Network shall be designed in such a way that operation of the Power Generating Module does not adversely affect the voltage profile of and voltage control employed on the Distribution Network. ETR 126 provides DNOs with guidance on active management solutions to overcome voltage control limitations. Section 13.8 of this document details specific control arrangements for Power Generating Modules connecting to the Distribution Network.

13.4.3 Synchronous Power Generating Modules Excitation Performance Requirements

13.4.3.1 Each Synchronous Generating Unit within a Synchronous Power Generating Module shall be equipped with a permanent automatic Excitation System that has the capability to provide constant terminal voltage (assuming a high enough Network source impedance to allow the Power Generating Module to achieve this while remaining within its ratings) at a selectable setpoint without instability over the entire operating range of the Synchronous Power Generating Module.

13.4.3.2 Control modes are discussed in more detail in section 13.8.

13.4.3.3 Voltage Control Performance Requirements for Power Park Modules
13.4.3.4 Each **Power Park Module** shall be fitted with a continuously acting automatic control system to provide control of the voltage at the **Connection Point** without instability over the entire operating range of the **Power Park Module**. Any plant or apparatus used to provide such voltage control within a **Power Park Module** may be located at the **Generating Unit** terminals, an appropriate intermediate busbar or the **Connection Point**. When operating below 15% **Registered Capacity** the automatic control system may continue to provide voltage control using any available reactive capability.

13.4.3.5 As part of the connection application process the **Generator** shall agree with the **DNO** the set points of the control scheme for voltage control, **Power Factor** control or **Reactive Power** control as appropriate. These settings, and any changes to these settings, shall be agreed with the **DNO** and recorded in the **Connection Agreement**.

13.4.3.6 The final responsibility for control of **Distribution Network** voltage does however remain with the **DNO**.

13.4.3.7 Automatic Voltage Control (AVC) schemes employed by the **DNO** often assume that power flows from parts of the **Distribution Network** operating at a higher voltage to parts of the **Distribution Network** operating at lower voltages. Export from **Power Generating Modules** in excess of the local loads may result in power flows in the reverse direction. In this case AVC referenced to the low voltage side may not operate correctly without an import of **Reactive Power** and relay settings appropriate to this operating condition. When load current compounding is used with the AVC and the penetration level of **Power Generating Modules** becomes significant compared to normal loads, it may be necessary to switch any compounding out of service.

13.4.4 **Power Generating Modules** can cause problems if connected to networks employing AVC schemes which use negative reactance compounding and line drop compensation due to changes in **Active Power** and **Reactive Power** flows. ETR 126 provides guidance on connecting generation to such networks using techniques such as removing the generation circuit from the AVC scheme using cancellation CTs.

13.5 **Reactive Capability**

13.5.1 All **Power Generating Modules** shall be capable of satisfying the **Reactive Power** capability requirements at the **Connection Point** as defined in Figure 13.6 when operating at **Registered Capacity**. In some cases, for example, on large industrial sites etc where the **Power Generating Module** is embedded in the **Generator's Installation**, the **DNO** may specify requirements that fit within the rectangular boundary defined in Figure 13.6, ie an envelope agreed between the **DNO** and the **Generator** within the rectangle of Figure 13.6. In such cases the **DNO** and **Generator** might agree a different control point, such as the **Power Generating Module**'s terminals. The performance requirements of the control system including **Slope** (where applicable) shall be agreed between the **DNO** and the **Generator**. For the avoidance of doubt, where the **Generator's Installation** involves **Power Generating Modules** and demand the entire **Generator's Installation** shall be considered to be a **Power Generating Facility** and shall be capable of delivering **Reactive Power** performance at the **Connection Point**. However, where complex **Generator's Installations** involve **Power Generating Modules** and demand, the **Generator** may submit calculations to support compliance.
13.5.2 At Active Power output levels other than Registered Capacity all Generating Units shall be capable of satisfying the Reactive Power capability requirements at the Connection Point as defined in Figure 13.7 when operating below Registered Capacity, taking the auxiliary supplies and the Active Power and Reactive Power losses of the Power Generating Module transformer or Station Transformer into account. These Reactive Power limits will be reduced pro rata to the amount of plant in service.

![Figure 13.6 Reactive Power capability requirements (Synchronous Power Generating Modules)](image)

13.5.3 At voltages above 1.05 pu, or below 0.95 pu a Power Generating Module shall maintain the Reactive Power output and Power Factor as far as possible recognizing that outside of the envelope of Figure 13.6 it will be necessary for the Reactive Power and/or Power Factor to be constrained by the capability as expressed on the Generator Performance Chart.
Figure 13.7 Reactive Power capability requirements (Power Generating Modules operating below Registered Capacity)

a) Point A is the maximum absorbing Reactive Power capability at 15% Registered Capacity (voltage control);

b) Point B is the maximum producing Reactive Power capability at 15% Registered Capacity (voltage control);

c) Point C is the maximum absorbing Reactive Power capability at 100% Registered Capacity (voltage control);

d) Point D is the maximum producing Reactive Power capability at 100% Registered Capacity (voltage control);

e) Point E is the Power Factor limit of 0.95 absorbing at 100% Registered Capacity;

f) Point F is the Power Factor limit of 0.95 producing at 100% Registered Capacity;

g) Point G is the kVAr capability, which may not be zero, at zero kW output; and

h) Points A, B, C & D i.e. reactive capability are defined by the capability declared by the Generator during the application process.
13.6 Fast Fault Current Injection

13.6.1 Fast Fault Current injection is necessary to support the Total System during a fault on the Transmission System. The design of Fast Fault Current injection is tailored to this, and does not relate directly to faults on the Distribution Network, not least as these will tend to have longer clearing times than those of the Transmission System for which Fast Fault Current injection is designed. In this Section 13.6 the faults referred to are Transmission System faults which clear within 140 ms and which will be seen in the Distribution Network as a voltage depression.

13.6.2 Each Power Park Module shall be required to satisfy the following requirements.

13.6.3 For any balanced or unbalanced fault on the Transmission System which results in the voltage at the Connection Point falling below 0.9 pu each Power Park Module shall be required to provide reactive current to the Distribution Network. The reactive current response of the Power Park Module shall attempt to control the voltage back towards the nominal voltage, and should be at least proportional to the voltage dip. The reactive current response shall be supplied within the rating of the Power Park Module, with a rise time no greater than 100 ms and a settling time no greater than 300 ms. The provision of reactive current shall continue until the system voltage recovers to within the normal operational range as specified in Distribution Code CC5.3.

13.7 Black Start Capability

13.7.1 If required, Black Start Capability of a Power Generating Module will be detailed in the Connection Agreement.

13.8 Control Modes

13.8.1 All Power Generating Modules shall be fitted with a Fast Acting control system capable of being switched between voltage control mode, Reactive Power control mode and Power Factor control mode within a voltage band as specified within the Connection Agreement for the particular site, and in any case within statutory limits as specified in the paragraph CC5.3 of the Distribution Code.

13.8.2 All Power Generating Modules shall be fitted with voltage, power and frequency control and Droop capabilities to meet the requirements of this EREC G99/NI.

13.8.3 Other voltage control schemes may be possible, but agreement between the Generator and the DNO shall be reached at the application stage for connection about their suitability. If voltage control is implemented for the Power Park Module rather than on individual Generating Units, then the range of Reactive Power available should not be less than that which would have been available if Voltage control had been on individual Generating Units. Voltage control schemes based upon equipment located on the DNO’s side of the connection may be possible, but such schemes are considered special, and the details, responsibilities and cost schedule shall be agreed between the Generator and the DNO in the Connection Agreement.
Whilst the **Power Generating Facility** is operating in **Power Factor** control mode its reactive capability is described by the envelope EFG within the **Reactive Power** capability chart given in Figure 13.7.

Whilst the **Power Generating Facility** is operating in voltage control mode, the minimum reactive capability is described by the envelope ACDBG within the **Reactive Power** capability chart given in Figure 13.7.

Whilst the **Power Generating Facility** is operating in VAr Control Mode the **Power Generating Modules** shall be capable of importing or exporting VArS within the envelope described by ACDBG within the **Reactive Power** capability chart given in Figure 13.7.

13.9 Operational monitoring

13.9.1 **Generators** shall in respect of their **Power Generating Facilities** comply with the SCADA signal requirements set out in this paragraph 13.9 and, in addition, such other SCADA signal requirements as the **DNO** may require because of network reasons, which will be specified prior to entry into the **Connection Agreement**:

13.9.2 The **DNO** shall issue control instructions by means of the SCADA signals set out in the **Power Park Module Setting Schedule** or, in the event of a SCADA malfunction, such other means as are determined by the **DNO** in consultation with the **Generator**.

13.9.3 The **Generator** shall acknowledge, where relevant, receipt of a control instruction issued under this paragraph 13.9 and shall comply promptly with the control instruction.

13.9.4 The following signal format shall be used where required by the particular connection:

 (a) Analogue signals: 4 to 20 mA
 (b) Digital pulses from the **DNO**: 24 V DC
 (c) Digital input from the **Generator**: 0 and 24 V DC
 (d) The use of any additional signal formats will be detailed in the **Power Park Module Setting Schedule**.

13.9.4.1 The analogue and digital signal requirements for connecting **Generators** are set out in the **Power Park Module Setting Schedule**.
13.9.5 Additionally each **Power Generating Facility** shall:

(a) be fitted with fault recording and dynamic system monitoring facilities which shall be capable of recording **System** data including voltage, **Active Power**, **Reactive Power** and frequency in accordance with Annex C.6.

(b) The settings of the fault recording equipment and dynamic system monitoring equipment (which is required to detect poorly damped power oscillations) including triggering criteria shall be agreed between the **Generator** and the **DNO** and recorded in the **Connection Agreement**.

(c) The **DNO** may also specify that **Generators** shall install power quality monitoring equipment. Any such requirement including the parameters to be monitored would be specified by the **DNO** in the **Connection Agreement**.

(d) Provisions for the submission of fault recording, dynamic system monitoring and power quality data to the **DNO** including the communications and protocols shall be specified by the **DNO** in the **Connection Agreement**.

13.9.6 The **Generator** will provide all relevant signals in a format to be agreed between the **Generator** and the **DNO** for onsite monitoring. All signals shall be suitably terminated in a single accessible location at the **Generator’s Installation**.

13.9.7 The **Generator** shall provide to the **DNO** a 230 V power supply adjacent to the signal terminal location.

13.9.8 **Frequency Sensitive Mode** (**FSM**) monitoring in real time

13.9.8.1 **Power Generating Modules** shall be fitted with facilities to record and monitor the operation of **Active Power Frequency Response** in real time if the **Generator** has chosen to enter into an appropriate system services commercial contract with the **TSO**.

13.9.8.2 Provisions for the submission of **Frequency Sensitive Mode** data to the **DNO** including the data to be monitored, communications and protocols shall be specified, if required, by the **DNO** in the **Connection Agreement**.

13.10 **Steady State Load Inaccuracies**

13.10.1 The standard deviation of load error at steady state load over a 30 minute period shall not exceed 2.5% of a **Power Generating Modules Registered Capacity**. Where a **Power Generating Module** is instructed to operate in frequency sensitive operation, allowance will be made in determining whether there has been an error according to the governor **Droop** characteristic.

For the avoidance of doubt in the case of a **Power Park Module** allowance will be made for the full variation of mechanical power output.
14 Installation, Operation and Control Interface

14.1 General

14.1.1 Installations should be carried out by competent persons, who have sufficient skills and training to apply safe methods of work to install the Power Generating Module in compliance with this EREC. Ideally they should have recognized and approved qualifications relating to the fuel / energy sources and general electrical installations.

14.1.2 Notwithstanding the requirements of this EREC, the installation should be carried out to the standards required in the Manufacturer’s installation instructions.

14.1.3 The Generator and DNO shall give due regard to these requirements and ensure that all personnel are competent in that they have adequate knowledge and sufficient judgement to take the correct action when dealing with an emergency. Failure to take correct action may jeopardise the Generator’s equipment or the Distribution Network and give rise to danger.

14.1.4 The DNO and the Generator shall agree in writing the salient technical requirements of the interface between their two systems. These requirements will generally be contained in the Site Responsibility Schedule and/or the Connection Agreement. In particular it is expected that the agreement will include:

(a) the means of synchronisation between the Generator’s Installation and the Distribution Network, where appropriate;

(b) the responsibility for plant, equipment and protection systems maintenance, and recording failures;

(c) the means of connection and disconnection between the Distribution Network and Generator's Installation;

(d) key technical data eg import and export capacities, operating Power Factor range, Interface Protection settings;

(e) the competency of all persons carrying out operations on their systems;

(f) details of arrangements that will ensure an adequate and reliable means of communication between the DNO and Generator;

(g) the obligation to inform each other of any condition, occurrence or incident which could affect the safety of the other’s personnel, or the maintenance of equipment and to keep records of the communication of such information;

(h) the names of designated persons with authority to act and communicate on their behalf and their appropriate contact details;

(i) the obligation of a Generator to notify the DNO of any operational incidents or failures of a Power Generating Module that affect its compliance with this EREC G99/NI, without undue delay, after the occurrence of those incidents.
14.1.5 Generators should be aware that many DNOs apply auto-reclose systems to HV overhead line circuits. This may affect the operations of directly connected HV Power Generating Modules and also Power Generating Modules connected to LV Distribution Networks supplied indirectly by HV overhead lines.

14.2 Isolation and Safety Labelling

14.2.1 Every Generator’s Installation which includes Power Generating Modules operating in parallel with the Distribution Network shall include a means of isolation capable of disconnecting the whole of the Power Generating Module infeed to the Distribution Network. This equipment will normally be owned by the Generator, but may by agreement be owned by the DNO.

14.2.2 The Generator shall grant the DNO rights of access to the means of isolation without undue delay and the DNO shall have the right to isolate the Power Generation Modules infeed at any time should such disconnection become necessary for safety reasons and in order to comply with statutory obligations. The isolating device should normally be installed at the Connection Point, but may be positioned elsewhere with the DNO’s agreement.

14.2.3 To ensure that DNO staff and that of the Generator and their contractors are aware of the presence of a Power Generating Module, appropriate warning labels should be used.

14.2.4 Where the installation is connected to the DNO LV Distribution Network the Generator should generally provide labelling at the Connection Point (Fused Cut-Out), meter position, consumer unit and at all points of isolation within the Generator’s Installation to indicate the presence of a Power Generating Module. The labelling should be sufficiently robust and if necessary fixed in place to ensure that it remains legible and secure for the lifetime of the installation. The Health and Safety (Safety Signs & Signals) Regulations (Northern Ireland) 1996 stipulates that labels should display the prescribed triangular shape, and size, using black on yellow colouring. A typical label, for both size and content, is shown below in Figure 14.1.

13 Where the Power Generating Module is designed to support part of the Generator’s Installation independently from the DNO system, the switch that is used to separate the independent part of the Generator’s Installation from the DNO system shall disconnect each phase and neutral. This prevents neutral current from inadvertently flowing through the part of the system that is not supported by the Power Generating Module. See also Figure 8.7 and 8.9.
14.2.5 Where the installation is connected to the DNO’s HV Distribution Network the Generator should give consideration to the labelling requirements. In some installations eg a complex CHP installation, extensive labelling may be required, but in others eg a wind farm connection, it is likely to be clear that Power Generating Modules are installed on site and labelling may not be required. Any labels should comply with The Health and Safety (Safety Signs & Signals) Regulations (Northern Ireland) 1996 which stipulates that labels should display the prescribed triangular shape, and size, using black on yellow colouring.

14.3 Site Responsibility Schedule

14.3.1 In order to comply with CC9 of the Connection Conditions of the Distribution Code a Site Responsibility Schedule (SRS) should be prepared by the DNO in conjunction with the Generator. The SRS should clearly indicate the ownership, operational and maintenance responsibility of each item of equipment at the interface between the Distribution Network and the Power Generating Module, and should include an ownership diagram so that all persons working at the interface have sufficient information so that they can undertake their duties safely and to minimise the risk of inadvertently interrupting supplies. The SRS should also record the agreed method of communication between the DNO and the Generator. Where the Power Generating Facility has a Registered Capacity of 50 kW (or 17 kW per phase) or less and is connected at LV then only compliance with paragraph 14.3.3 is required (this includes Integrated Micro Generation and Storage installations).

14.3.2 The ownership diagram should be readily available to those persons requiring access to the information contained on it. For example, this could be achieved by displaying a paper copy at the Connection Point, or alternatively provided as part of a computer based information system to which all site staff has access. The most appropriate form for this information to be made available should be agreed as part of the connection application process.

14.3.3 In the case of a LV connected Power Generating Module, a simple diagram located at the Connection Point may be sufficient. The scope of the diagram should cover the Distribution Network, Generator’s Installation and the Power Generating Module as shown below in Figure 14.2, however the location of any metering devices, consumer unit and Interface Protection (together with their settings) within the Generator’s Installation should also be shown.
14.3.4 In the case of an HV connected **Power Generating Module** the diagram is likely to be more complex and contain more detailed information.

14.3.5 In addition to preparing the diagram as part of the connection process, there are obligations on the **DNO** and the **Generator** to ensure that the Site Responsibility Schedule including the ownership diagram are updated to reflect any changes on site. To facilitate this, the **Generator** shall contact the **DNO** when any relevant changes are being considered.

14.4 Operational and Safety Aspects

14.4.1 Where the **Connection Point** provided by the **DNO** for parallel operation is at **HV**, in addition to the provisions of OC6, the **Generator** shall ensure:

(a) that a person with appropriate authority is available at all times to receive communications from the **DNO** Control Engineer so that emergencies, requiring urgent action by the **Generator**, can be dealt with adequately. Where required by the **DNO**, it will also be a duty of the **Generator**’s staff to advise the **DNO** Control Engineer of any abnormalities that occur on the **Power Generating Module** which have caused, or might cause, disturbance to the **Distribution Network**, for example earth faults;

(b) Where in the case that it is necessary for the **Generator**’s staff to operate the **DNO**’s equipment, they shall first have been appropriately trained and designated as a **DNO** ‘Authorised Person’ for this purpose. The names of the **Generators** authorised persons should be included on the Site Responsibility Schedule. All operation of **DNO** equipment shall be carried out to the specific instructions of the **DNO** Control Engineer in accordance with the **DNO**’s safety rules.

14.4.2 For certain **Power Generating Module** connections to an **HV Connection Point**, the **Generator** and the **DNO** may have mutually agreed to schedule the **Active Power** and / or **Reactive Power** outputs to the **Distribution Network** to ensure stability of the local **Distribution Network**. The **DNO** may require agreement on specific written procedures to control the bringing on and taking off of such **Power Generating Modules**. The action within these procedures will normally be controlled by the **DNO** Control Engineer.

14.4.3 Where the **Connection Point** provided by the **DNO** for parallel operation is at **LV**, the **DNO**, depending upon local circumstances, may require a similar communications procedure as outlined in sub-paragraph 14.4.1(a) above.
14.5 Synchronizing and Operational Control

14.5.1 Before connecting two energised electrical systems, for example a Distribution Network and Power Generating Module, it is necessary to synchronise them by minimising their voltage, frequency and phase differences.

14.5.2 Operational switching, for example synchronising, needs to take account of Step Voltage Changes as detailed in Section 9.3.

14.5.3 Automatic synchronising equipment will be the norm which, by control of the Power Generating Module’s field system (Automatic Voltage Regulator) and governor, brings the incoming unit within the acceptable operating conditions of voltage and speed (frequency), and closes the synchronising circuit breaker. Manual synchronising can only be done with the specific agreement of the DNO.

14.5.4 The facility to use the DNO’s interface circuit breaker for synchronising can only be used with the specific agreement of the DNO. Power Generating Modules shall be equipped with the necessary synchronisation facilities.

14.5.5 The synchronising voltage supply may, with DNO agreement, be provided from a DNO owned voltage transformer. Where so provided, the voltage supplies should be separately fused at the voltage transformer.

14.5.6 Where the Generator’s Installation comprises ring connections with normal open points, it may not be economic to provide synchronising at all such locations. In such cases mechanical key interlocking may be applied to prevent closure unless one side of the ring is electrically dead. A circuit breaker or breakers will still, however, require synchronising facilities to achieve paralleling between the Generator’s Installation and the DNO supply.

14.5.7 The conditions to be met in order to allow automatic reconnection when the DNO supply is restored are defined in Section 10.3. Where a Generator requires the Power Generating Module to continue to supply a temporarily disconnected section of the Distribution Network in island mode, the special arrangements necessary will need to be discussed with the DNO.
15 Common Compliance and Commissioning Requirements for all Power Generating Modules

15.1 Demonstration of Compliance

15.1.1 Where the Generator and the DNO agree that it is not practical to demonstrate the technical compliance requirements of this EREC G99/NI at the Connection Point, the DNO will accept demonstration of the requirements at the Generating Unit terminals.

15.1.2 The DNO will allow the Generator to carry out alternative tests, provided that those tests are efficient and suffice to demonstrate that a Power Generating Module complies with the requirements of this EREC G99/NI.

15.2 Wiring for Type Tested Power Generating Modules

15.2.1 Where Type Tested components are wired together on site, i.e. not using specifically designed plugs and sockets for the purpose, it will be necessary to prove that all wiring has been correctly terminated by proving the functions which rely on the wiring. The Generator will submit to the DNO for agreement a schedule of the wiring connections to be made, the functions that they enable, and the tests to prove them. Satisfactory completion of the agreed tests will enable the Power Generating Modules to attain or retain Type Tested status. An example of this requirement is given in Form A2-4 (Annex A.2).

15.3 Commissioning Tests / Checks required at all Power Generating Facilities

15.3.1 The following checks shall be carried out by the Installer at all Power Generating Facilities and on all Power Generating Modules irrespective of whether they have been fully or partially Type Tested:

(a) Inspect the Power Generating Facility to check compliance with BS7671. Checks should consider:

- Protection
- Earthing and bonding
- Selection and installation of equipment

(b) Check that suitable lockable points of isolation have been provided between the Power Generating Modules and the rest of the installation;

(c) Check that safety labels have been installed in accordance with paragraph 14.2;

(d) Check interlocking operates as required. Interlocking should prevent Power Generating Modules being connected to the DNO’s Distribution Network without being synchronised; and

(e) Where possible undertake a visual check that the correct protection settings have been applied in accordance with Table 10.1 or Form A2-4 Site Compliance and Commissioning test requirements form (Annex A.2), Form B2-2 (Annex B.2) or Form C2-2 (Annex C.2) as applicable to Type A, Type B and Type C or Type D Power Generating Modules respectively.
15.3.2 The following tests shall be carried out by the Installer at all Power Generating Facilities and on all Power Generating Modules irrespective of whether they have been fully or partially Type Tested:

(a) Complete functional tests to ensure each Power Generating Module synchronises with, and disconnects from, the DNO's Distribution Network successfully and that it operates without tripping under normal conditions;

(b) Carry out an appropriate functional test to confirm that the Interface Protection operates when all phases are disconnected between the Power Generating Module and the DNO’s Distribution Network. For installations where the Power Generating Module is not designed to automatically switch to support the installation’s demand in island mode, this test can be carried out by opening a suitably rated switch between the Power Generating Module and the Connection Point and checking that the supplies are disconnected between the Power Generating Module and the DNO’s Distribution Network quickly (eg within 1 s);

(c) Where the Power Generating Module is designed to support the demand of the installation automatically in island mode on failure of the incoming supply, the Generator will undertake a suitable test as agreed with the DNO (such as removing one or all of the voltage sensing supplies to the Interface Protection relay) to prove that under these conditions that the supplies are disconnected between the Power Generating Module and the DNO’s Distribution Network quickly (eg within 1 s);

(d) Check that once the phases are restored following the functional test described in (b) at least 60 s elapses before the Power Generating Modules re-connect to the DNO’s Distribution Network where automatic re-connection is permitted under 10.3.3; and

(e) For any installations using an export limitation scheme, including those connecting under the Integrated Micro Generation and Storage procedure, the commissioning tests detailed in EREC G100 shall be carried out for the export limitation scheme, with the results recorded in the form contained in the relevant EREC G100 appendix. This is in addition to the Power Generating Module compliance and commissioning tests required by EREC G98/NI and EREC G99/NI.

15.3.3 The tests and checks shall be carried out once the installation is complete, or, in the case of a phased installation (ie where Generating Units that comprise a Power Generating Module are installed in different phases), when that part of the installation has been completed. The results of these tests and checks shall be recorded on the installation forms included in Form A3-1 or Form A3-2 (Annex A.3), Form B3 (Annex B.3), or Form C3 (Annex C.3) as applicable to Type A, Type B and Type C or Type D Power Generating Modules respectively. In the case of a phased installation, this would result in the submission of multiple versions of Form A3-1, A3-2, B3 or C3 for the same Power Generating Module.
15.4 Additional Commissioning requirements for Non Type Tested Interface Protection

15.4.1 Where Type Testing or Manufacturers’ Information is not being used to demonstrate Interface Protection compliance, on site protection commissioning tests are required and the following describes how these should be carried out for the standard range of protection required. Where additional protection is fitted then this should also be tested, additional test requirements are to be agreed between the DNO and Generator.

The results of these tests shall be recorded in the schedule provided in the Form A2-4 (Annex A.2), Form B2-2 (Annex B.2) or Form C2-2 (Annex C.2) as applicable to Type A, Type B and Type C or Type D Power Generating Modules respectively; using the relevant sections for HV and LV protection along with any additional test results required.

(a) Calibration and stability tests shall be carried out on the over voltage and under voltage protection for each phase, as described below:

- The operating voltage shall be checked by applying nominal voltage to the protection (so that it resets) and then slowly increasing this voltage (for over voltage protection) or reducing it (for under voltage protection) until the protection picks up. The voltage at which the protection picks up shall be recorded. Where the test equipment increases / decreases the voltage in distinct steps, these shall be no greater than 0.5% of the voltage setting. Each pickup value shall be within 1.5% of the required setting value.

- Timing tests shall be carried out by stepping the voltage from the nominal voltage to a value 4 V above the setting voltage (for overvoltage protection) and 4 V below the setting (for under voltage protection) and recording the operating time of the protection. The operating time of the protection relay shall be no shorter than the setting and no greater than the setting + 100 ms.

- Stability tests (no-trip tests) shall also be carried out at the voltages and for the durations defined in in Form A2-4 (Annex A.2), Form B2-2 (Annex B.2) or Form C2-2 (Annex C.2) as applicable to Type A, Type B and Type C or Type D Power Generating Modules respectively. The protection shall not trip during these tests.

(b) Calibration and stability tests shall be carried out on the over frequency and under frequency protection as described below:

- The operating frequency shall be checked by applying nominal frequency to the protection (so that it resets) and then slowly increasing this frequency (for over frequency protection) or reducing it (for under frequency protection) until the protection picks up. The frequency at which the protection picks up shall be recorded. Where the test equipment increases / decreases the frequency in distinct steps, these shall be no greater than 0.1% of the frequency setting. Each pick up value shall be within 0.2% (ie 0.1 Hz) of the setting value.

- Timing tests shall be carried out by stepping the frequency from 0.3 Hz below the setting frequency to a value 0.3 Hz above the setting frequency (for over frequency protection) and 0.3 Hz above the setting
frequency to 0.3 Hz below the setting (for under frequency protection) and recording the operating time of the protection. The operating time of the protection relay shall be no shorter than the setting and no greater than the setting + 100 ms or the setting + 1% of the setting, whichever gives the longer time.

- Stability tests (no-trip tests) shall also be carried out at the frequencies and for the durations defined in the commissioning test record, Form A2-4 (Annex A.2), Form B2-2 (Annex B.2) or Form C2-2 (Annex C.2) as applicable to Type A, Type B and Type C or Type D Power Generating Modules respectively. The protection shall not trip during these tests.

(c) Calibration tests for rate of change of frequency protection, where used, shall be checked by first applying a voltage with the frequency of 50.5 Hz to the protection and then ramping this frequency down at 0.1 Hzs\(^{-1}\) less than the RoCoF protection setting until a frequency reaches 49.5 Hz. This test is repeated at increasing values of rate of change of frequency (in increments of 0.05 Hzs\(^{-1}\) or less) until the protection operates. The test shall be repeated for rising frequency but this time each test shall be start at 49.5 Hz and end at 50.5 Hz. The operating values should be within 0.05 Hzs\(^{-1}\) of the required setting. Timing tests shall be carried out by applying a falling and a rising frequency at rate of 0.1.0 Hzs\(^{-1}\) above the setting value and at 3 Hzs\(^{-1}\). The protection relay operating times shall be no longer than 1.0 s.

(d) RoCoF and vector shift stability tests shall be performed on all Interface Protection relays irrespective of the type of loss of mains protection employed for a particular Power Generating Module or Power Generating Facility. These tests are defined in the commissioning test record, Form A2-4 (Annex A.2), Form B2-2 (Annex B.2) or Form C2-2 (Annex C.2) as applicable to Type A, Type B and Type C or Type D Power Generating Modules respectively. The protection shall not trip during these tests.
16 Type A Compliance Testing, Commissioning and Operational Notification

16.1 Type Test Certification

16.1.1 The **Power Generating Module** can comprise **Fully Type Tested** equipment or be made up of some **Type Tested** equipment and require additional site testing prior to operation. The use of **Fully Type Tested** equipment simplifies the connection process, the protection arrangements and reduces the commissioning test requirements.

16.1.2 **Type Tested** certification is the responsibility of the **Manufacturer**. The **Manufacturer** shall submit the Type Test Verification Report confirming that the product has been **Type Tested** to satisfy the requirements of this EREC G99/NI to the Energy Networks Association (ENA) Type Test Verification Report Register. The report shall detail the type and model of product tested, the test conditions and results recorded. The report can include reference to **Manufacturers’ Information**. Examples of the combination of the use of type testing and the provision of **Manufacturers’ Information** are given in Section 22.1. A **Manufacturer** of a **Type Tested** product should allocate a **Manufacturer’s** reference number, which should be registered on the ENA Type Test Verification Report Register as the Product ID.

16.1.3 The required Type Test Verification Report and declarations including that for a **Fully Type Tested Power Generating Module** are shown in Annex A.2:

- Form A2-1 - Compliance Verification Report for **Synchronous Power Generating Modules** up to and including 50 kW,

- Form A2-2 - Compliance Verification Report for **Synchronous Power Generating Modules** > 50 kW and also for **Synchronous Power Generating Modules** ≤ 50 kW where the approach of this form is preferred to that in Form A2-1, or

- Form A2-3 - Compliance Verification Report for **Inverter** Connected **Power Generating Modules**.

The choice of compliance routes available is shown in Figure 16.1 below.

It is intended that the **Manufacturers** will use the requirements of this EREC G99/NI to develop type verification certification (i.e. the Compliance Verification Report as shown in Annex A.2) for each of their **Power Generating Module** models.

Form A2-3 caters for all asynchronous and **Inverter** technologies of any size, with the exception of conventional induction **Generating Units**. **Manufacturers** of induction **Generating Units** may find it more appropriate to use forms A2-2 or A2-1 in preference to Form A2-3 (Annex A.2).
16.1.4 Guidance for Manufacturers on type testing for Power Generating Modules is included in Annex A.7 of this document.

16.1.5 Compliance with the requirements detailed in this EREC G99/NI will ensure that the Power Generating Module is considered to be approved for connection to the DNO’s Distribution Network.

16.1.6 The Power Generating Module shall comply with all relevant European Directives and should be labelled with a corresponding CE marking.
16.2 Connection Process

16.2.1 The Installer shall discuss the installation project with the local DNO at the earliest opportunity. The connection application will need to be in a format as shown in Form A1-2 (Annex A.1) for Integrated Micro Generation and Storage installations or by using the Standard Application Form (generally available from the DNO’s website). Where a Power Generating Module is Fully Type Tested and registered with the Energy Networks Association Type Test Verification Report Register, the application should include the Manufacturer’s reference number (the Product ID), and the compliance test results do not need to be submitted as part of the application.

16.2.2 On receipt of the application, the DNO will assess:

- whether any Distribution Network studies are required;
- whether there is a need for work on the Distribution Network before the Power Generating Module can be connected to the Distribution Network; and
- whether there is a requirement to witness the commissioning tests and checks.

16.2.3 Connection of the Power Generating Module is only allowed after the application for connection has been approved by the DNO and any DNO works facilitating the connection have been completed.

16.2.4 Where a Power Generating Module is not Fully Type Tested, the Generator or Installer shall provide the DNO with a Compliance Verification Report as per Annex A.2 (Forms A2-1, A2-2 or A2-3 as applicable) confirming that the Power Generating Module has or will be tested to satisfy the requirements of this EREC G99. This should be provided prior to commencing commissioning.

16.2.5 Where Power Generating Modules require connection to the DNO’s Distribution Network in advance of the commissioning date, for the purposes of testing, the Power Generating Facility shall comply with the requirements of the Connection Agreement. The Generator shall provide the DNO with a commissioning programme, which will be approved by the DNO if reasonable in the circumstances, to allow commissioning tests to be co-ordinated.

16.2.6 Where commissioning tests are not witnessed, confirmation of the commissioning of each Power Generating Module will need to be made no later than 28 days after commissioning; the format and content shall be as shown in Form A3-1 (Annex A.3) Installation Document for Type A Power Generating Modules or Form A3-2 (Annex A.3) Installation Document for Integrated Micro Generation and Storage installations. The Installer or Generator, as appropriate, shall complete the declaration at the bottom of the Installation Document (Form A3-1 or Form A3-2) noting that this declaration also covers the Site Compliance and Commissioning Test Form Form A2-4 (Annex A.2). Where the tests are witnessed a copy shall be provided to the DNO at the time of commissioning.
16.2.7 It is the responsibility of the Generator (which may be delegated to the Installer) to ensure that the relevant information is forwarded to the local DNO. The pro forma in Annex A are designed to:

(a) simplify the connection procedure for both the DNO and the Installer;

(b) provide the DNO with all the information required to assess the potential impact of the Power Generating Module connection on the operation of the Distribution Network;

(c) inform the DNO that the Generator’s Installation complies with the requirements of this EREC G99/NI; and

(d) allow the DNO to accurately record the location of all Power Generating Modules connected to the Distribution Network.

16.3 Witnessing and Commissioning

16.3.1 The DNO will not normally witness the commissioning checks and tests for Fully Type Tested Power Generating Modules or Integrated Micro Generation and Storage installations connected to the DNO’s Distribution Network at LV. In such cases, where the DNO does decide to witness, it will advise this as part of the connection offer. Reasons for witnessing such installations may include:

(a) A new Installer with no track record in the DNO area.

(b) A check on the quality of an installation either on a random basis or as a result of problems that have come to light at previous installations.

16.3.2 Where commissioning tests and checks are to be witnessed the Installer shall discuss and agree the scope of these tests with the DNO at an early stage of the project. The tests shall take account of the requirements in Section 15.3. The Installer shall submit the scope, date and time of the commissioning tests at least 15 days before the proposed commissioning date.

16.3.3 Where the DNO chooses to witness the Power Generating Module commissioning tests and checks, the DNO shall charge the Generator for attendance of staff for witness testing in accordance with its charging regime.

16.3.4 No parameter relating to the electrical connection and subject to type test verification certification shall be modified unless previously agreed in writing between the DNO and the Generator. Generator access to such parameters in Type Tested equipment shall be prevented by a password, pin or a physical switch that has the facility to be sealed in accordance with paragraph 10.1.4.

16.3.5 The checks and tests as detailed in Section 15.2, 15.3 and 15.4 shall be undertaken to the extent applicable.

16.3.6 Where Type Testing or Manufacturers’ Information is not being used to demonstrate the compliance of the Interface Protection the tests detailed in Section 15.4 shall be undertaken.
16.4 Operational Notification

16.4.1 Notification that the **Power Generating Module** has been connected / commissioned is achieved by completing an Installation Document as per Annex A.3, which also includes the relevant details on the **Generator’s Installation** required by the **DNO**.

16.4.2 The **Installer**, or an agent acting on behalf of the **Installer**, shall supply separate Installation Documents Form A3-1 (Annex A.3) for **Type A Power Generating Modules** or Form A3-2 (Annex A.3) for **Integrated Micro Generation and Storage** installations) for each **Power Generating Facility** installed under EREC G99/NI to the **DNO**. Documentation shall be supplied either at the time of commissioning (where tests are witnessed) or within 28 days of the commissioning date (where the tests are not witnessed) and may be submitted electronically.

16.4.3 **Generators** who own **Type A Power Generating Modules** do not have rights to operate their **Power Generating Modules** until the commissioning tests have been successfully completed (and witnessed by the **DNO** if required) and the Installation Document has been fully completed and sent to the **DNO**.
17 Type B Compliance Testing, Commissioning and Operational Notification

17.1 General

17.1.1 Where Power Generating Modules require connection to the DNO’s Distribution Network in advance of the commissioning date, for the purposes of testing, the Power Generating Facility shall comply with the requirements of the Connection Agreement. The Generator shall provide the DNO with a commissioning programme, which will be approved by the DNO if reasonable in the circumstances, to allow commissioning tests to be co-ordinated. The tests shall take account of the requirements in Section 15.3 and Section 15.4 where applicable.

17.1.2 The Generator shall use Type Tested equipment and/or Manufacturers’ Information and/or site tests, as well as demonstrating commissioning tests performed on the Power Generating Module in order to discharge the requirements of this document. Examples of the combination of the use of type testing and the provision of Manufacturers’ Information are given in Section 22.1. Note that the DNO shall charge the Generator for attendance of staff for witness testing in accordance with its charging regime. The Generator shall make arrangements for the DNO to witness the commissioning tests unless otherwise agreed with the DNO. There is more about witnessing commissioning tests in 17.6.

17.1.3 It is the responsibility of the Generator to undertake commissioning tests / checks and to ensure the Power Generating Facility and Power Generating Modules meet all the relevant requirements.

17.1.4 In addition to the commissioning tests and checks required under EREC G99/NI, in exceptional circumstances further tests may be required by the DNO from the Manufacturer, Supplier, Generator or Installer of the Power Generating Modules as may be required to satisfy legislation and other standards.

17.2 Connection Process

17.2.1 The Generator shall discuss the project with the local DNO at the earliest opportunity. The Generator will need to provide information using the Standard Application Form (generally available from the DNO’s website) to allow detailed system studies to be undertaken. Connection of the Power Generating Module is only allowed after the application for connection has been approved by the DNO and any DNO works facilitating the connection have been completed.

17.2.2 Not less than 28 days, or such shorter period as may be acceptable in the DNO’s reasonable opinion, prior to the Generator wishing to synchronise its Power Generating Module for the first time the Generator will submit to the DNO a Power Generating Module Document containing at least but not limited to the items referred to in paragraph 17.2.3.

17.2.3 Items for submission in the Power Generating Module Document:

(a) updated data in the Distribution Code, Planning Code Appendices A and B (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values, by updated estimates for the future and by updated forecasts for Forecast Data items such as demand.
In practice this data can be supplied by updating the information provided in the Standard Application Form.

(b) details of any special Power Generating Module(s) protection as applicable.

(c) simulation study carried out in accordance with the provisions of Annex B.4 and the results demonstrating compliance with EREC G99/NI: Frequency Capability and Frequency Sensitive Mode requirements of paragraph 12.2, Fault Ride Through requirements of Section 12.3, reactive capability requirements of Section 12.5 and Power Park Module Fast Fault Current injection requirements of paragraph 12.6 unless agreed otherwise by the DNO.

(d) a detailed schedule of the tests and the procedures for the tests required to be carried out by the Generator to achieve an Interim Operational Notification. Such schedule to be consistent with the requirements of Section 12 and Annex B.5 (in the case of a Synchronous Power Generating Module) or Annex B.6 (in the case of a Power Park Module). It should be noted that whilst excitation system and reactive capability tests are not part of the standard set of tests for Type B Power Generating Modules the DNO may require the tests to be undertaken. If the DNO does require tests, they shall be based on the tests in Annex C8 and C9 and shall be agreed with the Generator.

(e) copies of Manufacturers' Information where these are relied upon as part of the evidence of compliance.

17.2.4 A Power Generating Module Document (PGMD) shall be submitted for each applicable Power Generating Module. An example of a Power Generating Module Document is given in Form B2-1 (Annex B.2).

17.2.5 The Generator will give at least 28 days’ notice for the date of tests which are required to achieve an Interim Operational Notification and that are to be witnessed by the DNO. The DNO shall assess the schedule of tests submitted by the Generator and agree the test start date. The DNO can agree to a shorter period of notice than 28 days. Approval of the test start date, and agreement to a shorter period of notice than 28 days, shall be made in a timely manner and not be unreasonably withheld by the DNO.

17.3 Temporary Export Restriction

17.3.1 For Power Generating Facilities with a Registered Capacity greater than or equal to 1 MW, the Generator shall limit their export to 50% of their Registered Capacity until SCADA commissioning and controllability tests have been completed. This limit is intended to restrict the Generator to only operate one Generating Unit at a time during testing and commissioning. Should this limit impede the Generator’s ability to commission the Power Generating Facility, the Generator may apply in writing to the DNO to have the limit raised or temporarily removed. The decision to raise or remove the cap will be entirely at the discretion of the DNO.

17.3.2 The Generator is not expected to install or alter reverse power flow protection at the Connection Point as part of this temporary export restriction.
17.4 SCADA Commissioning

17.4.1 Type 1 RTU

17.4.1.1 The DNO shall complete its RTU installation before the Power Generating Facility is energised. Controllability tests will only be performed once the Generator has completed their side of the SCADA installation.

17.4.2 Type 2 RTU

17.4.2.1 Following synchronisation, the Generator should complete their SCADA installation in order to obtain a Final Operational Notification and within 12 months. The SCADA installation shall be considered completed following the successful completion of a SCADA Site Acceptance Test conducted by the DNO. A copy of the test procedure shall be made available to the Generator. Failure to meet this deadline will be considered as non-compliance to the Distribution Code.

17.5 Controllability Tests

17.5.1 The Generator is required to demonstrate the Power Generating Facility Controller performs correctly for the different Reactive Power control modes. The purpose of these tests is to demonstrate the controller meets the final steady state criteria from paragraph 12.8.7 and paragraph 12.8.6.

17.5.2 These tests should be performed by the DNO using remote control over SCADA. Where this is not available the DNO may visit the Power Generating Facility and conduct the test with verbal instructions to the Generator. The Generator shall provide a display indicating the following measurements at the Connection Point.

- Active Power (kW)
- Reactive Power (kVAR)
- Average Line Voltage (kV)

17.5.3 A copy of the controllability test sheet can be found in Annex B.10.

17.5.4 Power Generating Facilities < 1MW

17.5.4.1 Following synchronisation, the Generator has 12 months to successfully complete controllability tests. Failure to meet this deadline will be considered as non-compliance to the Distribution Code.

17.6 Witnessing and Commissioning

17.6.1 The Generator is responsible for carrying out the tests and retains the responsibility for safety and personnel during the test.

17.6.2 The tests as detailed in the Power Generating Module Document shall be carried out by the Generator (and which may be delegated to the Installer).

14 Type 1 and Type 2 RTUs are defined in Annex B.7
17.6.3 The checks and tests as detailed in Section 15.2 and 15.3 shall be undertaken to the extent applicable.

17.6.4 Where Type Testing or Manufacturers’ Information is not being used to demonstrate the compliance of the Interface Protection the tests detailed in Section 15.4 shall be undertaken.

17.6.5 The tests and checks shall be carried out once the installation is complete, or, in the case of a phased installation (ie where Power Generating Modules are installed in different phases), when that part of the installation has been completed. The results of these tests shall be recorded on the Installation and Commissioning Form B3 and the additional compliance and commissioning tests, Form B2-2 if applicable. The Installer or Generator, as appropriate, shall complete the declaration at the bottom of Form B3, sign and date it and provide a copy to the DNO at the time of commissioning.

17.6.6 If compliance tests or simulations cannot be carried out as agreed between the DNO and the Generator due to reasons attributable to the DNO, then the DNO shall not unreasonably withhold the Final Operational Notification to be issued under Section 17.7.

17.6.7 Some of the tests mentioned may be required to be carried out and witnessed by third parties. Final approval will however be given by the DNO. This will not relieve the Generator of any responsibility for compliance with the Distribution Code and EREC G99/NI. During these controllability tests, it is the responsibility of the Generator to record the specified results electronically.

17.6.8 The DNO will decide whether test witnessing will be required, and arrange for the presence of witnesses. The DNO will inform the Generator of the schedule of tests to be witnessed and may vary this by reasonable notice. Some of these tests may be carried out remotely by SCADA by agreement with the DNO.

17.6.9 Where the DNO decides not to witness any test, this shall not relieve the Generator of any responsibility for compliance with the Distribution Code, EREC G99/NI, Connection Agreement or other standard to be used as a fair measure, nor shall the act of witnessing be deemed to transfer any responsibility to the DNO either for compliance or for the consequences of failure to comply. Final approval of all distribution related testing shall be given by the DNO after analysing test results.

17.6.10 It is the responsibility of the Generator to achieve acceptable results for each test. Failure to do so may require the Generator to repeat certain tests. The format of the results, for example in graphical and tabular form, should be agreed with the DNO 6 weeks in advance of the tests taking place. The Generator shall provide fast speed recording equipment the output from which will be used for the purpose of analysing test results.

17.6.11 All sinusoidal waveforms should be presented in RMS format and all tests results, as a minimum requirement, shall provide RMS parameter magnitudes every 100 ms.

17.6.12 It is important that results are legible, clearly labelled and graphs appropriately scaled in engineering units. The DNO may require that certain tests are appropriately annotated.
17.7 Operational Notification

17.7.1 Prior to the issue of an *Interim Operational Notification* the *Generator* shall submit to the *DNO* to the *DNO*’s satisfaction:

(a) updated data in the Planning Code Appendices A and B (both *Standard Planning Data* and *Detailed Planning Data*), with validated actual values and updated estimates for the future including forecast data items such as demand. In practice, this data can be supplied by updating the information provided in the Standard Application Form;

(b) evidence to the *DNO*’s satisfaction that demonstrates that the *Controller* models and/or parameters (as required under the Planning Code Appendix B) supplied to the *DNO* provide a reasonable representation of the behaviour of the *Generator*’s plant and apparatus;

(c) copies of *Manufacturers’ Information* where these are relied upon as part of the evidence of compliance;

(d) results from the tests carried out by the *Generator* to demonstrate compliance with relevant EREC G99/NI requirements including the tests witnessed by the *DNO*; and

(e) the Compliance Declaration signed by the *Generator*.

17.7.2 The items in paragraph 17.4.1 should be submitted by the *Generator* using the *Power Generating Module Document*, Form B2-1 (Annex B.2) and Planning Code Appendices A and B (via the Standard Application Form). Submission should normally be within 28 days of first synchronisation.

17.7.3 Test results will be required 1 week after the completion of the tests. This shall include the forms shown in Annex B.3 Installation and commissioning confirmation and where applicable Form B2-2 Site compliance and commissioning test requirements. Reasonable time will be required for the *DNO* to fully analyse the test results and determine whether or not the *Power Generating Facility* is compliant. The *Power Generating Facility* may continue operation during the result evaluation period.

17.7.4 If the requirements of this Section 17.7 have been successfully met, the *DNO* will notify the *Generator* that compliance with the relevant EREC G99/NI provisions has been demonstrated for the *Power Generating Module(s)* as applicable through the issue of an *Interim Operational Notification* as part of the *Connection Agreement*. Other than for the purposes of compliance testing and commissioning, the *Generator* has no permanent rights to operate the *Power Generating Module* until the *Final Operational Notification* is received. It is expected that the compliance testing and commissioning will not take longer than 6 months; however a phased approach or a longer period may be agreed with the *DNO*.

17.8 Post-Synchronisation Monitoring

17.8.1 During a one year period from the issue of the *Interim Operational Notification* (normally 12 months but this may need to be extended in order to prove compliance), the *DNO* shall actively monitor the *Power Generating Facility* and assess its performance against *Distribution Code*, EREC G99/NI and *Connection Agreement* criteria.
17.8.2 If the continuous monitoring of the Active Power availability is successful then the DNO will issue a Final Operational Notification as part of the Connection Agreement.

17.8.3 During this period, if the DNO identifies an area of non-compliance, the DNO shall issue the Generator with a Limited Operational Notification in accordance with the Distribution Code CC 11.2.4.4 or CC 11.3.3.4. This Limited Operational Notification will detail the level of non-compliance, the timeframe to rectify non-compliance and any restrictions applicable to the Power Generating Facility.

17.8.4 After completion of any works required to make the Power Generating Facility compliant, the DNO shall use the tests outlined within this document as a measure to test compliance.

17.8.5 At least 6 weeks in advance of testing, the Generator shall provide the DNO with a test programme. The DNO’s objective in seeking this information is to establish from the Generator’s programme, those tests which may have an impact on the Distribution Network.
18 Type C Compliance Testing, Commissioning and Operational Notification

18.1 General

18.1.1 Where Power Generating Modules require connection to the DNO’s Distribution Network in advance of the commissioning date, for the purposes of testing, the Power Generating Facility shall comply with the requirements of the Connection Agreement. The Generator shall provide the DNO/TSO with a commissioning programme, which will be approved by the DNO/TSO if reasonable in the circumstances, to allow commissioning tests to be co-ordinated. The tests shall take account of the requirements in Section 15.3 and Section 15.4 and the Power Park Module Setting Schedule where applicable.

18.1.2 The Generator shall use Type Tested equipment and/or Manufacturers’ Information and/or site tests as well demonstrating all the commissioning tests performed on the Power Generating Module in order to discharge the requirements of this document. Note that the DNO shall charge the Generator for attendance of staff for witness testing in accordance with its charging regime. The Generator shall make arrangements for the DNO/TSO to witness the commissioning tests unless otherwise agreed with the DNO/TSO.

18.1.3 It is the responsibility of the Generator to undertake commissioning tests / checks and to ensure the Power Generating Facility and Power Generating Modules meet all the relevant requirements of this EREC G99/NI. Power Park Modules shall also meet the requirements of the Power Park Module Setting Schedule.

18.1.4 In addition to the commissioning tests and checks required under EREC G99/NI, further tests may be required by the Manufacturer, Supplier, Generator or Installer of the Power Generating Modules as may be required to satisfy legislation and other standards.

18.2 Connection Process

18.2.1 The Generator shall discuss the project with the local DNO/TSO at the earliest opportunity. The Generator will need to provide information using the Standard Application Form (generally available from the DNO’s website) to allow detailed system studies to be undertaken. Connection of the Power Generating Module is only allowed after the application for connection has been approved by the DNO and any DNO works facilitating the connection have been completed.

18.2.2 Not less than 28 days, or such shorter period as may be acceptable in the DNO’s reasonable opinion, prior to the Generator wishing to synchronise its Synchronous Power Generating Module for the first time the Generator will submit to the DNO/TSO a Power Generating Module Document, containing at least but not limited to the items referred to in paragraph 18.2.3. A Generator wishing to synchronise its Power Park Module for the first time shall do so in accordance with the PPM Setting Schedule.

18.2.3 Items for submission in the Power Generating Module Document:

(a) updated data in the Planning Code Appendices A and B (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values, by updated estimates for the future and by updated
forecasts for **Forecast Data** items such as demand. In practice, this data can be supplied by updating the information provided in the Standard Application Form.

(b) details of any special **Synchronous Power Generating Module(s)** protection. This may include pole slipping protection and islanding protection schemes as applicable;

c) the simulation models as detailed in Section 6.3;

d) simulation study carried out in accordance with the provisions of Annex C.7 and the results demonstrating compliance with the frequency capability and **Frequency Sensitive Mode** requirements of paragraph 13.2, **Fault Ride Through** requirements of Section 13.3, reactive capability requirements of Section 13.5 and **Fast Fault Current** injection requirements of paragraph 13.6 unless agreed otherwise by the DNO/TSO;

e) a detailed schedule of the tests and the procedures for the tests required to be carried out by the **Generator** to achieve a **Final Operational Notification**. Such schedule to be consistent with Section 13, Annex C.8; and

(f) copies of **Manufactures Information** where these are relied upon as part of the evidence of compliance.

18.2.4 A separate **Power Generating Module Document (PGMD)** shall be submitted for each **Synchronous Power Generating Module**. An example of a **Power Generating Module Document** is given in Form C2-1 (Annex C.2).

18.2.5 The **Generator** will give at least 28 days’ notice for the date of tests which are required to achieve **Interim Operational Notification** and that are to be witnessed by the DNO/TSO. The DNO/TSO shall assess the schedule of tests submitted by the **Generator** and agree the test start date. The DNO/TSO can agree to a shorter period of notice than 28 days. Approval of the test start date, and agreement to a shorter period of notice than 28 days, shall be made in a timely manner and not be unreasonably withheld by the DNO/TSO.

18.3 **Witnessing and Commissioning**

18.3.1 The **Generator** is responsible for carrying out the commissioning tests and retains the responsibility for safety and personnel during the test.

18.3.2 The checks and tests as detailed in Section 15.2 and 15.3 shall be undertaken to the extent applicable.

18.3.3 Where Type Testing or **Manufacturers’ Information** is not being used to demonstrate **Interface Protection** the tests detailed in Section 15.4 shall be undertaken.

18.3.4 For **Synchronous Power Generating Modules** the tests as detailed in the **Power Generating Module Document** shall be carried out by the **Installer** or **Generator**. For **Power Park Modules** reference should be made to the **PPM Setting Schedule**.
18.3.5 SCADA Commissioning and Controllability Tests

18.3.5.1 The DNO shall complete their Type 1 RTU15 installation before the Power Generating Facility is energised. Controllability tests will only be performed once the Generator has completed their side of the SCADA installation.

18.3.5.2 Prior to synchronisation, the Generator shall prove the functionality of all SCADA signals from each Generating Unit to the DNO Control Centre and the TSO Control Centre. The Generator shall contact the DNO/TSO Control Centres to carry out this SCADA functionality test.

18.3.5.3 This functionality test is required to ensure that when the Power Generating Module is synchronised the DNO/TSO will have full control from the instant that the Power Generating Facility is capable of Active Power export.

18.3.5.4 The Generator is required to demonstrate the Power Generating Facility controller performs correctly for the different Reactive Power control modes. The purpose of these tests is to demonstrate the controller meets the criteria from Section 13.8.

18.3.5.5 These tests should be performed by the DNO using remote control over SCADA.

18.3.5.6 A copy of the controllability test sheet can be found in Annex B.10.

18.3.6 The tests and checks shall be carried out once the installation is complete, or, in the case of a phased installation (ie where Generating Units that comprise a Power Generating Module are installed in different phases), when that part of the installation has been completed. For Synchronous Power Generating Modules the results of these tests shall be recorded on the Power Generating Module Document Form C2-1 (Annex C.2) and the installation and commissioning document Form C3 (Annex C.3). The Installer or Generator, as appropriate, shall complete the declaration at the bottom of Form C3, sign and date it and provide a copy to the DNO/TSO at the time of commissioning.

18.3.7 If compliance tests or simulations cannot be carried out as agreed between the DNO/TSO and the Generator due to reasons attributable to the DNO/TSO, then the DNO/TSO shall not unreasonably withhold the Interim Operational Notification to be issued under Section 18.4.

18.4 Operational Notification

18.4.1 Prior to the issue of an Interim Operational Notification the Generator shall submit to the DNO/TSO to the DNO/TSO’s satisfaction:

(a) updated data in the Planning Code Appendices A and B (both Standard Planning Data and Detailed Planning Data), with validated actual values and updated estimates for the future including forecast data items such as demand. In practice, this data can be supplied by updating the information provided in the Standard Application Form;

15 Type 1 and Type 2 RTUs are defined in Annex B.7
(b) evidence to the DNO/TSO’s satisfaction that demonstrates that the Controller models and/or parameters (as required under the Planning Code) supplied to the DNO/TSO provide a reasonable representation of the behaviour of the Generator’s plant and apparatus;

c) copies of Manufacturers’ Information where these are relied upon as part of the evidence of compliance;

d) results from the tests carried out by the Generator to demonstrate compliance with relevant EREC G99/NI requirements including the tests witnessed by the DNO/TSO; and

e) the Compliance Declaration signed by the Generator.

18.4.2 The items in paragraph 18.4.1 should be submitted by the Generator using the Power Generating Module Document, Form C2-1 (Annex C.2) the Installation and Commissioning Form C3 (Annex C.3), and the Planning Code (via the Standard Application Form). Submission should normally be within 28 days of first synchronisation.

18.4.3 If the requirements of this Section 18.4 have been successfully met, the DNO will notify the Generator that compliance with the relevant EREC G99/NI provisions has been demonstrated for the Power Generating Module(s) as applicable through the issue of an Interim Operational Notification as part of the Connection Agreement. Other than for the purposes of compliance testing and commissioning, the Generator has no permanent rights to operate the Power Generating Module until the Final Operational Notification is received. It is expected that the compliance testing and commissioning will not take longer than 6 months; however a phase approach or a longer period may be agreed with the DNO.

18.4.4 Monitoring and testing of the Synchronous Power Generating Module will be undertaken following issue of the Interim Operational Notification. Once Operational readiness confirmation and a successful dispatch test have been achieved in accordance with Section 5.2.1 of the Power Park Module Setting Schedule then continuous monitoring of the Active Power availability is undertaken.

18.4.5 If the continuous monitoring is successful then the TSO and the DNO will issue a Final Operational Notification.

18.4.6 During this period, if the DNO identifies an area of non-compliance, the DNO shall issue the Generator with a Limited Operational Notification in accordance with the Distribution Code CC 11.2.4.4 or CC 11.3.3.4. This Limited Operational Notification will detail the level of non-compliance, the timeframe to rectify non-compliance and any restrictions applicable to the Power Generating Facility.

18.4.7 After completion of any works required to make the Power Generating Facility compliant, the DNO/TSO shall use the tests outlined within this document as a measure to test compliance.

18.4.8 At least 6 weeks in advance of testing, the Generator shall provide the DNO/TSO with a test programme. The DNO/TSO’s objective in seeking this information is to establish from the Generator’s programme, those tests which may have an impact on the Distribution Network.
19 Type D Compliance Testing, Commissioning and Operational Notification

19.1 General

19.1.1 A Type D Power Generating Module will be required to obtain an Energisation Operational Notification followed by an Interim Operational Notification and a Final Operational Notification as set out in this Section.

19.1.2 The Generator shall use Type Tested equipment and or use Manufacturers’ Information as well as demonstrating all the commissioning tests performed on the Power Generating Module in order to discharge the requirements of this document. It is expected that the DNO/TSO will witness the commissioning tests for Power Generating Modules. Note that the DNO shall charge the Generator for attendance of staff for witness testing in accordance with its charging regime. The Generator shall make arrangements for the DNO to witness the commissioning tests unless otherwise agreed with the DNO.

19.1.3 It is the responsibility of the Generator to undertake these commissioning tests / checks and to ensure the Power Generating Facility and Power Generating Modules meet all the relevant requirements of this EREC G99/NI. Power Park Modules shall also meet the requirements of the Power Park Module Setting Schedule.

19.1.4 In addition to the commissioning tests and checks required under EREC G99/NI, further tests may be required by the Manufacturer, Supplier, Generator or Installer of the Power Generating Modules as may be required to satisfy legislation and other standards.

19.2 Connection Process

19.2.1 The Generator shall discuss the project with the local DNO/TSO at the earliest opportunity. The Generator will need to provide information using the Standard Application Form (generally available from the DNO’s website) to allow detailed system studies to be undertaken. Connection of the Power Generating Module is only allowed after the application for connection has been approved by the DNO and any DNO works facilitating the connection have been completed. Once the construction phase commences the Generator should submit an initial draft Power Generating Module Document to the DNO/TSO.

19.2.2 In order to energise a Generator’s internal network it is necessary to obtain an Energisation Operational Notification. The following provisions apply in relation to the issue of an Energisation Operational Notification in respect of Type D Power Generating Modules or Power Park Modules connecting to the Distribution Network.
19.2.3 The items for submission prior to the issue of an Energisation Operational Notification are detailed below:

(a) updated data in the Planning Code Appendices A and B (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecast data as required by the Planning Code;

(b) details of the protection arrangements at the Connection Point and settings;

(c) The site responsibility schedule completed to the DNO's satisfaction;

(d) any additional provisions in the connection offer and or the Connection Agreement

19.2.4 The items referred to in this Section shall be submitted using the Standard Application Form or Power Generating Module Document, or the UDL as applicable.

19.2.5 Not less than 28 days, or such shorter period as may be acceptable in the DNO's reasonable opinion, prior to the Generator wishing to energise its plant and apparatus for the first time the Generator will confirm in writing the plant and apparatus that is ready to be connected to the DNO's Distribution Network specifying the items of plant and apparatus in a form acceptable to the DNO.

19.2.6 If the conditions of Section 19.2 have been completed to the DNO/TSO’s reasonable satisfaction then the DNO/TSO shall issue an Energisation Operational Notification.

19.3 Interim Operational Notification

19.3.1 The following provisions apply in relation to the issue of an Interim Operational Notification in respect of Type D Power Generating Modules.

19.3.2 Not less than 28 days, or such shorter period as may be acceptable in the DNO/TSO’s reasonable opinion, prior to the Generator wishing to synchronise its plant and apparatus for the first time the Generator will submit to the DNO/TSO the items referred to in paragraph 19.3.3.

19.3.3 Prior to the issue of an Interim Operational Notification the Generator shall submit to the DNO/TSO to the DNO/TSO’s satisfaction:

(a) an update of any of the items required to achieve an Energisation Operational Notification and any updated data in the Planning Code Appendices A and B (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for forecast data items such as demand;

(b) details of any special Power Generating Module(s) or protection. This may include Pole Slipping protection and islanding protection schemes as applicable;
(c) a simulation study report in accordance with the provisions of Annex C.7 containing the results demonstrating compliance with EREC G99/NI Frequency Sensitive Mode requirements of paragraph 13.2.7, paragraph 13.2.4 (LFSM-O) and paragraph 13.2.5 (LFSM-U), Fault Ride Through requirements of Section 13.3 and Fast Fault Current injection requirements of Section 13.6 as applicable to the Power Generating Module(s) unless agreed otherwise by the DNO/TSO. If a Power System Stabiliser is fitted the appropriate studies should be undertaken in accordance with the Grid Code;

(d) a detailed schedule of the tests and the procedures for the tests required to be carried out by the Generator to demonstrate compliance in order to gain a Final Operational Notification. Such schedule to be consistent with Section 13, Site testing and commission requirements, Annex C.7, together with Annex C.8 (in the case of Synchronous Power Generating Modules) or the Power Park Module Setting Schedule (in the case of Power Park Modules); and

(e) an interim Compliance Declaration completed by the Generator (including any Unresolved Issues) against the relevant EREC G99/NI requirements including details of any requirements that the Generator has identified that will not or may not be met or demonstrated. If applicable this should include a declaration that Black Start compliance has been obtained from the TSO.

19.3.4 For Synchronous Power Generating Modules the items in paragraph 19.3.3 are intended to be submitted by the Generator using the Power Generating Module Document, Form C2-1 (Annex C.2). For Power Park Modules reference should be made to the PPM Setting Schedule.

19.3.5 The DNO/TSO shall assess the schedule of tests submitted by the Generator with the Notification of Generator’s Intention to Synchronise and shall determine whether such schedule has been completed to the DNO/TSO’s satisfaction.

19.3.6 When the requirements of paragraph 19.3.3 have been met, the DNO will notify the Generator that the Power Generating Module be synchronised to the Total System through the issue of an Interim Operational Notification.

19.3.7 No Type D Power Generating Module shall be synchronised to the Total System until the date specified by the DNO/TSO in the Interim Operational Notification issued in respect of the Power Generating Module(s);

19.3.7.1 The Interim Operational Notification will be time limited, the expiration date being specified at the time of issue. The Interim Operational Notification may be renewed by the DNO/TSO for up to a maximum of 24 months from the date of the first issue of the Interim Operational Notification. The DNO/TSO may only issue an extension to an Interim Operational Notification beyond 24 months provided the Generator has applied for a derogation for any remaining Unresolved Issues to the Authority as detailed in Section 19.7.

19.3.8 The Generator shall operate the Power Generating Module in accordance with the terms, arising from the Unresolved Issues of the Interim Operational Notification. Where practicable, the DNO/TSO will discuss such terms with the Generator prior to including them in the Interim Operational Notification.
19.3.9 For Synchronous Power Generating Module(s) employing a static Excitation System the Interim Operational Notification may, if applicable, limit the maximum Active Power output and Reactive Power output of the Synchronous Power Generating Module or CCGT Module prior to the successful commissioning of any Power System Stabiliser to the DNO/TSO’s satisfaction.

19.3.10 Operation in accordance with the Interim Operational Notification whilst it is in force will meet the requirements for compliance by the Generator of all the relevant provisions of this EREC G99/NI.

19.3.11 Other than Unresolved Issues that are subject to tests required prior to issue of a Final Operation Notification, the Generator shall resolve any Unresolved Issues prior to the commencement of the tests, unless the DNO/TSO agrees to a later resolution. The Generator shall liaise with the DNO/TSO in respect of such resolution. The tests that may be witnessed by the DNO/TSO are specified in paragraph 19.5.2.

19.4 Witnessing and Commissioning

19.4.1 The Generator is responsible for carrying out the commissioning tests and retains the responsibility for safety and personnel during the test.

19.4.2 The checks and tests as detailed in Section 15.2 and 15.3 shall be undertaken to the extent applicable.

19.4.3 Where Type Testing or Manufacturers’ Information is not being used to demonstrate Interface Protection the tests detailed in Section 15.4 shall be undertaken.

19.4.4 The tests as detailed in the Power Generating Module Document shall be carried out by the Installer or Generator.
19.4.5 SCADA Commissioning and Controllability Tests

19.4.5.1 The DNO shall complete their Type 1 RTU16 installation before the Power Generating Facility is energised. Controllability tests will only be performed once the Generator has completed their side of the SCADA installation.

19.4.5.2 Prior to synchronisation, the Generator shall prove the functionality of all SCADA signals from each Generating Unit to the DNO Control Centre and the TSO Control Centre. The Generator shall contact the DNO/TSO Control Centres to carry out this SCADA functionality test.

19.4.5.3 This functionality test is required to ensure that when the Power Generating Module is synchronised the DNO/TSO will have full control from the instant that the Power Generating Facility is capable of Active Power export.

19.4.5.4 The Generator is required to demonstrate the Power Generating Facility controller performs correctly for the different Reactive Power control modes. The purpose of these tests is to demonstrate the controller meets the criteria from Section 13.8.

19.4.5.5 These tests will be performed by the DNO using remote control over SCADA.

19.4.5.6 A copy of the controllability test sheet can be found in Annex B.10

19.4.6 The tests and checks shall be carried out once the installation is complete, or, in the case of a phased installation (ie where Generating Units that comprise a Power Generating Module are installed in different phases), when that part of the installation has been completed. The results of these tests shall be recorded on the Power Generating Module Document Form C2-1 (Annex C.2) and the installation and commissioning document Form C3 (Annex C.3). The Installer or Generator, as appropriate, shall complete the declaration at the bottom of Form C3, sign and date it and provide a copy to the DNO/TSO at the time of commissioning.

19.5 Final Operational Notification

19.5.1 The following provisions apply in relation to the issue of a Final Operational Notification in respect of Type D Power Generating Modules. Monitoring and testing of the Synchronous Power Generating Module will be undertaken following issue of the Interim Operational Notification. Once Operational readiness confirmation and a successful dispatch test have been achieved in accordance with Section 5.2.1 of the Power Park Module Setting Schedule then continuous monitoring of the Active Power availability is undertaken.

19.5.2 Prior to the issue of a Final Operational Notification the Generator shall have completed the tests specified in paragraph 19.5.2.1 to the DNO/TSO’s satisfaction to demonstrate compliance with the relevant EREC G99/NI provisions.

16 Type 1 and Type 2 RTUs are defined in Annex B.7
19.5.2.1 In the case of any **Synchronous Power Generating Module** these tests will comprise one or more of the following as agreed with the **DNO/TSO**:

(a) Reactive capability tests to demonstrate that the **Synchronous Power Generating Module** can meet the requirements of paragraph 13.5. **Synchronous Power Generating Modules** shall demonstrate **Reactive Power** capability following the procedure in Annex C.8. These tests may be witnessed by the **DNO** on site if there is no metering to the **DNO**’s Control Centre.

(b) Voltage control system tests to demonstrate that the **Synchronous Power Generating Module** can meet the requirements of paragraph 13.4.3 and paragraph 13.4.4 as applicable. **Synchronous Power Generating Modules** shall demonstrate **Excitation System** capability following the procedure in Annex C.8. These tests may also be used to validate the **Excitation System** model or voltage control system model as applicable (**Distribution Code**, Planning Code Appendix B). These tests may be witnessed by the **DNO**.

(c) Governor or frequency control system tests to demonstrate that the **Power Generating Module** can meet the requirements of paragraph 13.1.3 and Section 13.2. **Synchronous Power Generating Modules** shall demonstrate the governor and load controller response performance capability following the procedure in Annex C.8. These tests may also be used to validate the Governor model or frequency control system model as applicable (**Distribution Code** Planning Code Appendix B). These tests may be witnessed by the **DNO**.

19.5.2.2 The **DNO/TSO**’s preferred range of tests to demonstrate compliance with this EREC G99/NI are specified in Annex C.8 and are to be carried out by the **Generator** with the results of each test provided to the **DNO/TSO**. The **Generator** may carry out an alternative range of tests if this is agreed with the **DNO**. The **DNO/TSO** may agree a reduced set of tests where relevant Manufacturers’ Information has been provided.

19.5.2.3 Following completion of each of the tests specified in this Section 19.4, the **DNO/TSO** will notify the **Generator** whether, in the opinion of the **DNO/TSO**, the results demonstrate compliance with EREC G99/NI.

19.5.2.4 The **Generator** is responsible for carrying out the tests and retains the responsibility for safety and personnel during the test.

19.5.3 Items for submission prior to issue of the **Final Operational Notification**.

19.5.3.1 Prior to the issue of a **Final Operational Notification** the **Generator** shall submit to the **DNO/TSO** to the **DNO/TSO**’s satisfaction:

a) updated data in the Planning Code Appendices A and B (both **Standard Planning Data** and **Detailed Planning Data**), with validated actual values and updated estimates for the future including Forecast Data items such as demand;

b) the items required in order to obtain the **Energisation Operational Notification** and the **Interim Operational Notification**, updated as necessary by the **Generator**;
c) evidence to the DNO/TSO’s satisfaction that demonstrates that the Controller models and/or parameters (as required under DCode Planning Code Appendix B (DPD)) supplied to the DNO/TSO provide a reasonable representation of the behaviour of the Generator’s plant and apparatus;

d) copies of Manufacturers' Information where these are relied upon as part of the evidence of compliance;

e) results from the tests required in accordance with paragraph 19.4.2 carried out by the Generator to demonstrate compliance with relevant EREC G99/NI requirements including the tests witnessed by the DNO/TSO;

f) the final Compliance Declaration signed by the Generator and a statement of any requirements that the Generator has identified that have not been met together with a copy of the derogation in respect of the same from the Authority.

19.5.3.2 The items in paragraph 19.5.3 should be submitted by the Generator as required by the Power Generating Module Document, Form C2-1 (Annex C.2) or the User Data Library as applicable.

19.5.4 Once Operational readiness confirmation and a successful dispatch test have been achieved in accordance with Section 5.2.1 of the Power Park Module Setting Schedule then continuous monitoring of the Active Power availability is undertaken. If the requirements of paragraph 19.5.2 and paragraph 19.5.3 have been successfully met and the continuous monitoring of the Active Power availability is successful, the DNO/TSO will notify the Generator that compliance with the relevant EREC G99/NI provisions has been demonstrated for the Power Generating Module(s) as applicable through the issue of a Final Operational Notification as part of the Connection Agreement.

19.5.5 If compliance tests or simulations cannot be carried out as agreed between the DNO/TSO and the Generator due to reasons attributable to the DNO/TSO, then the DNO/TSO shall not unreasonably withhold the Final Operational Notification to be issued under this Section 19.5 or other appropriate notification.

19.5.6 If a Final Operational Notification cannot be issued because the requirements of paragraph 19.5.2 and paragraph 19.5.3 have not been successfully met prior to the expiry of an Interim Operational Notification then the Generator and/or the DNO/TSO shall apply to the Authority for a Derogation. The provisions of paragraph 19.7 shall then apply.

19.5.7 The Power Generating Module does not have a right to be operated without a valid Final Operational Notification or an Interim Operational Notification or a Limited Operational Notification following completion of the commissioning tests and process.

19.6 Limited Operational Notification

19.6.1 Following the issue of a Final Operational Notification for a Type D Power Generating Module if:

i. the Generator becomes aware, that its plant and/or apparatus' capability to meet any provisions of EREC G99/NI, or where applicable the Connection Agreement, is not fully available then the Generator shall follow the process in paragraph 19.6.2 to paragraph 19.6.10; or,
ii. The DNO/TSO becomes aware through monitoring as described in paragraph 13.9, that a Generator and/or apparatus’ capability to meet any provisions of EREC G99/NI, or where applicable the Connection Agreement, then the DNO/TSO shall inform the Generator. Where the DNO/TSO and the Generator cannot agree from the monitoring as described in paragraph 13.9 whether the plant and/or apparatus is fully available and/or is compliant with the requirements of EREC G99/NI and where applicable the Connection Agreement, the DNO/TSO shall first issue an instruction requiring the Generator to carry out a test, before applying the process defined in Section 19.6 if applicable. Where the testing indicates that the plant and/or apparatus is not compliant with the requirements of EREC G99/NI and/or the Connection Agreement, or if the parties so agree, the process in paragraph 19.6.2 to paragraph 19.6.10 shall be followed.

19.6.2 Immediately upon a Generator becoming aware that its Power Generating Module may be unable to comply with certain provisions of EREC G99/NI or (where applicable) the Connection Agreement, the Generator shall notify the DNO/TSO in writing. Additional details of any operating restrictions or changes in applicable data arising from the potential non-compliance and an indication of the date from when the restrictions will be removed and full compliance demonstrated shall be provided as soon as reasonably practical.

19.6.3 Where the restriction notified in paragraph 19.6.2 is not resolved in 28 days then the Generator with input from and discussions with the DNO/TSO, shall undertake an investigation to attempt to determine the causes of and solution to the non-compliance. Such investigation shall continue for no longer than 56 days. During such investigation, the Generator shall provide to the DNO/TSO the relevant data which has changed due to the restriction in respect of paragraph 19.5.3 as notified to the Generator by the DNO/TSO as being required to be provided.

19.6.4 Issue and Effect of Limited Operational Notification

19.6.4.1 Following the issue of a Final Operational Notification, the DNO/TSO will issue to the Generator a Limited Operational Notification if:

(a) by the end of the 56 day period referred to at 19.6.3 the investigation has not resolved the non-compliance to the DNO/TSO’s satisfaction; or

(b) The DNO/TSO is notified by a Generator of a Modification to its plant and apparatus; or

(c) The DNO/TSO receives a submission of data, or a statement from a Generator indicating a change in plant or apparatus or settings (including but not limited to governor and excitation control systems) that may in the DNO/TSO’s reasonable opinion, acting in accordance with Good Industry Practice be expected to result in a material change of performance.
19.6.4.2 The Limited Operational Notification will be time limited to expire no later than 12 months from the start of the non-compliance or restriction or from reconnection following a change. The DNO/TSO may agree a longer duration in the case of a Limited Operational Notification following a Modification or whilst the Authority is considering the application for a derogation in accordance with paragraph 19.7.1.

19.6.4.3 The Limited Operational Notification will notify the Generator of any restrictions on the operation of the Synchronous Power Generating Module(s), CCGT Module(s) or Power Park Module(s) and will specify the Unresolved Issues. The Generator shall operate in accordance with any notified restrictions and shall resolve the Unresolved Issues.

19.6.4.4 The Generator will be deemed compliant with all the relevant provisions of EREC G99/NI provided operation is in accordance with the Limited Operational Notification, whilst it is in force, and that the provisions of and referred to in Section 19.5 are complied with.

19.6.4.5 The Unresolved Issues included in a Limited Operational Notification for a Synchronous Power Generating Module will show the extent that the provisions of paragraph 19.5.2 (testing) and paragraph 19.5.3 (final data submission) shall apply. The Unresolved Issues included in a Limited Operational Notification for a Power Park Module will show the extent that the provisions for testing and data submission in accordance with the PPM Setting Schedule shall apply.

In respect of selecting the extent of any tests which may in the DNO/TSO’s view reasonably be needed to demonstrate the restored capability and in agreeing the time period in which the tests will be scheduled, the DNO/TSO shall, where reasonably practicable, take account of the Generator’s input to contain its costs associated with the testing.

19.6.4.6 In the case of a Modification the Limited Operational Notification may specify that the affected plant and/or apparatus or associated Generating Unit(s) shall not be synchronised until all of the following items, that in the DNO/TSO’s reasonable opinion are relevant, have been submitted to the DNO/TSO to the DNO/TSO’s satisfaction:

(a) updated data in the Planning Code Appendices A and B (both Standard Planning Data and Detailed Planning Data);

(b) details of any relevant special Power Generating Facility, Synchronous Power Generating Module(s) or Power Park Module(s) protection as applicable. This may include Pole Slipping protection and islanding protection schemes;

(c) simulation study provisions of Annex C.7 and the results demonstrating compliance with EREC G99/NI requirements relevant to the Modification as agreed by the DNO/TSO;

(d) a detailed schedule of the tests and the procedures for the tests required to be carried out by the Generator to demonstrate compliance with EREC G99/NI requirements and the Power Park Module Setting Schedule as applicable and as agreed by the DNO/TSO. The schedule of tests shall be consistent with Annex C.8 or the Power Park Module Setting Schedule as appropriate;
(e) an interim Compliance Declaration completed by the Generator (including any Unresolved Issues) against the relevant EREC G99/NI requirements including details of any requirements that the Generator has identified that will not or may not be met or demonstrated; and

(f) any other items specified in the Limited Operational Notification.

19.6.4.7 The items referred to in paragraph 19.6.4.6 shall be submitted by the Generator as required by the Planning Code and the Power Generating Module Document, Form C2-1 (Annex C.2), (for Synchronous Power Generating Modules) or, in the case of Power Park Modules, by submitting the User Data Library as per the Power Park Module Setting Schedule.

19.6.4.8 In the case of Synchronous Power Generating Module(s) only, the Unresolved Issues of the Limited Operational Notification may require that the Generator shall complete the following tests to the DNO/TSO’s satisfaction to demonstrate compliance with the relevant provisions of EREC G99/NI prior to the Synchronous Power Generating Module being synchronised to the Total System:

(a) those tests required to establish the open and short circuit saturation characteristics of the Synchronous Power Generating Module (as detailed in Annex C.8.3) to enable assessment of the short circuit ratio. Such tests may be carried out at a location other than the Power Generating Facility site; and

(b) open circuit step response tests (as detailed in Annex C.8.2) to demonstrate compliance with Section 13.4.

19.6.5 In the case of a Modification, not less than 28 days, or such shorter period as may be acceptable in the DNO/TSO’s reasonable opinion, prior to the Generator wishing to synchronise its plant and apparatus for the first time following the Modification, the Generator shall submit to the DNO/TSO the items referred to in paragraph 19.6.4.6.

19.6.6 Other than Unresolved Issues that are subject to tests to be witnessed by the DNO/TSO, the Generator shall resolve any Unresolved Issues prior to the commencement of the tests, unless the DNO/TSO agrees to a later resolution. The Generator shall liaise with the DNO/TSO in respect of such resolution. The tests that may be witnessed by the DNO/TSO are specified in paragraph 19.5.2.2 for Synchronous Power Generating Modules and as agreed in accordance with the Power Park Module Setting Schedule.

19.6.7 Not less than 28 days, or such shorter period as may be acceptable in the DNO/TSO’s reasonable opinion, prior to the Generator wishing to commence tests listed as Unresolved Issues to be witnessed by the DNO/TSO, the Generator or will notify the DNO/TSO that the Synchronous Power Generating Module(s), CCGT Module(s) or Power Park Module(s) as applicable is ready to commence such tests.

19.6.8 The items referred to in paragraph 19.5.3 for Synchronous Power Generating Modules or in accordance with the Power Park Module Setting Schedule and listed as Unresolved Issues shall be submitted by the Generator after successful completion of the tests.
19.6.9 Where the **Unresolved Issues** have been resolved a **Final Operational Notification** will be issued to the **Generator**.

19.6.10 If a **Final Operational Notification** has not been issued by the **DNO/TSO** within the 12 month period referred to in paragraph 19.6.4.2 (or where agreed following a **Modification** by the expiry time of the **Limited Operational Notification**) then the **Generator** and the **DNO/TSO** shall apply to the **Authority** for a derogation.

19.7 **Processes Relating to Derogations**

19.7.1 Whilst the **Authority** is considering the application for a derogation, the **Interim Operational Notification** or **Limited Operational Notification** will be extended to remain in force until the **Authority** has notified the **DNO/TSO** and the **Generator** of its decision.

19.7.2 If the **Authority**:

 (a) grants a derogation in respect of the plant and/or apparatus, then the **DNO/TSO** shall issue **Final Operational Notification** once all other **Unresolved Issues** are resolved; or

 (b) decides a derogation is not required in respect of the plant and/or apparatus then the **DNO/TSO** will reconsider the relevant **Unresolved Issues** and shall issue a **Final Operational Notification** once all other **Unresolved Issues** are resolved; or

 (c) decides not to grant any derogation in respect of the plant and/or apparatus, then there will be no Operational Notification in place and in accordance with Article 3.1 of the RfG the **DNO** will initiate a process to disconnect the **Power Generating Facility** from the **DNO**'s **Distribution Network**.

 (d) Where an **Interim Operational Notification** or **Limited Operational Notification** is so conditional upon a derogation and such derogation includes any conditions (including any time limit to such derogation) the **Generator** will progress the resolution of any **Unresolved Issues** and / or progress and / or comply with any conditions upon such derogation and the provisions of paragraph 19.5 shall apply and shall be followed
20 Ongoing Obligations

20.1 Periodic Testing for Power Generating Modules

20.1.1 The DNO shall have the right to request that the Generator carry out compliance tests and simulations according to a repeat plan or general scheme or after any failure, Modification or replacement of any equipment that may have an impact on the Power Generating Module’s compliance with the requirements of this EREC G99/NI.

20.1.2 The DNO will assess the results of the tests and inform the Generator of the outcome.

20.1.3 It may be necessary to undertake ad-hoc testing to determine\(^\text{17}\), for example:

(a) the voltage dip on synchronising;
(b) the harmonic voltage distortion;
(c) the voltage levels as a result of the connection of the Power Generating Facilities and to confirm that they remain within the statutory limits;

20.1.4 The Interface Protection shall be tested by the Generator at intervals to be agreed with the DNO.

20.2 Operational Incidents affecting Compliance of any Power Generating Module

20.2.1 The DNO shall be notified of any operational incidents or failures of Power Generating Modules that affect its compliance with this EREC G99/NI, without undue delay, after the occurrence of those incidents.

20.2.2 The DNO shall have the right to request that the Generator arrange to have compliance tests undertaken after any failure or replacement of any equipment that may have an impact on the Power Generating Module’s compliance with this EREC G99/NI. Note that where the replacement equipment is itself Type Tested or supported by appropriate Manufacturers’ Information, tests and checks on site can be limited to functional checks such as to comply with paragraph 15.2.

20.3 Changes to the Power Generating Facility or Power Generating Module

20.3.1 The DNO shall have the right to request that the Generator arrange to have compliance tests undertaken after any Modification or replacement of any equipment that may have an impact on the Power Generating Module’s compliance with this EREC G99/NI.

20.3.2 If during the lifetime of the Power Generating Modules it is necessary to replace a component of a Power Generating Module, its protection system or Interface Protection, the Generator shall notify the DNO before the Modification is initiated. The DNO and the Generator will agree whether the nature of the Modification is such that the Generator is only required to reconfirm the compliance with the requirements in this EREC G99/NI in relation to the affected

\(^{17}\) Such periodic testing may be required due to system changes, DNO protection changes, fault investigations etc.
component, or whether the Modification is sufficiently material (e.g., with a higher Registered Capacity) such that the Generator should submit a new Standard Application Form for the new equipment and a Decommissioning Form for the old equipment. Where a Generating Unit or Power Generating Module is replaced, the replacement shall comply with this EREC G99/NI (rather than the EREC G59/1/NI if it originally complied with EREC G59/1/NI).

20.3.3 Where a Power Generating Module installed under EREC G59/1/NI is modified substantially such that its fundamental characteristics are changed (and which are reflected in a modified connection agreement) then it will be necessary for that Power Generating Module to be modified to be compliant with EREC G99/NI. Modifications to a EREC G59/1/NI compliant Power Generating Module that do not result in a change of fundamental characteristics can remain compliant with EREC G59/1/NI.

20.3.4 For the special case where an existing Power Generating Module of less than 5MW Registered Capacity (i.e., of a size that is less than Type C) that complies with EREC G59/1/NI is being relocated to another existing site where the Power Generating Module(s) on that other site is also existing and EREC G59/1/NI compliant, then the relocated Power Generation Module will only need to comply with EREC G59/1/NI provided that the relocated Power Generating Module:

- has the same Registered Capacity as, or
- has a smaller Registered Capacity than,

the Power Generating Module it is replacing.

If an existing Power Generating Module is being relocated to an existing site where it has a larger Registered Capacity than the Power Generating Module it is replacing, or it is being relocated to a new site, then full compliance with EREC G99/NI will be required in either case.

20.3.5 Where one or more Power Generating Modules are to be added or replaced at an existing Generator’s Installation which was installed prior to the introduction of this EREC G99/NI, it is not necessary to modify the other existing Power Generating Modules to comply with this document. For the avoidance of doubt, this also applies where the changes increase the capacity of the Generator’s Installation above the 16 A per phase threshold.

20.3.6 For example, the addition of a new 3 kW single phase Power Generating Module to an existing Generator’s Installation comprising an existing 3 kW single phase Power Generating Module complying with EREC G83/1 increases the capacity of the Generator’s Installation from 3 kW (13.04 A per phase) to 6 kW (26.08 A per phase). In this case, the new Power Generating Module will have to comply with EREC G99/NI but the existing Power Generating Module will not need to be modified. For more information on the treatment of additions, see Section 6 and paragraph 6.1.5.

20.4 Notification of Decommissioning

20.4.1 The Generator shall notify the DNO about the permanent decommissioning of a Power Generating Module by providing the information as detailed under Annex D.1. Documentation may be submitted by an agent or third party such as an
aggregator, acting on behalf of the Generator and may be submitted electronically. Where the presence of Power Generating Modules is indicated in a special Connection Agreement, it will be necessary to amend the Connection Agreement appropriately.
21 Not used
Type Testing and Annex information

22.1 Fully Type Tested and Partially Type Tested equipment

The following matrix demonstrates where Manufacturers’ Information and compliance and installation checks on site can be combined to demonstrate compliance for each Power Generating Module.

<table>
<thead>
<tr>
<th>Manufacturers’ Information</th>
<th>Site Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Type Tested (assumed Type A only)</td>
<td>Only installation checks required – as on the Installation Document (Form A3-1 or A3-2)</td>
</tr>
<tr>
<td>(i) Registered as product or component Type Test information on ENA Website using applicable parts of Compliance Verification Report (Form A2-1, A2-2 or A2-3); and/or</td>
<td>Demonstration of technical requirements not covered by Manufacturers’ Information. (Form A3-1 or A3-2)</td>
</tr>
<tr>
<td>(ii) Supplied by the Generator using applicable parts of Compliance Verification Report (Form A2-1, A2-2 or A2-3)</td>
<td>Standard installation checks (Form A3-1 or A3-2). Additional Site Compliance and Commissioning Checks (Form A2-4) may also be required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partially Type Tested (Type A)</th>
<th>Demonstration of technical requirements not covered by Manufacturers’ Information. (Form B2-1, Form C2-1 or UDL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(iii) Registered as product or component Type Test information on ENA Website; and/or</td>
<td>Standard installation checks (Form B3 or Form C3).</td>
</tr>
<tr>
<td>(iv) Supplied by the Generator</td>
<td>Additional Site Compliance and Commissioning Checks (Form B2-2 or Form C2-2) may also be required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partially Type Tested (B, C, D)</th>
<th>Demonstration of technical requirements not covered by Manufacturers’ Information. (Form B2-1, Form C2-1 or UDL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be provided by the Generator for those aspects that cannot be demonstrated on site (including simulations etc)</td>
<td>Standard installation checks also required (Form B3 or Form C3).</td>
</tr>
<tr>
<td>Additional Site Compliance and Commissioning Checks (Form B2-2 or Form C2-2) may also be required</td>
<td></td>
</tr>
</tbody>
</table>
22.2 Annex Contents and Form Guidance

<table>
<thead>
<tr>
<th>Annex</th>
<th>Application</th>
<th>Form Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.0</td>
<td>Cover Sheet for Type A Power Generating Facility Forms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note for all other Power Generating Modules the DNO’s Standard Application Form shall be used.</td>
<td></td>
</tr>
<tr>
<td>A.2</td>
<td>Compliance report for Type A Type Tested</td>
<td>Form A2-1: Compliance Verification Report for Synchronous Power Generating Modules up to and including 50 kW</td>
</tr>
<tr>
<td></td>
<td>Form A2-2: Compliance Verification Report for Synchronous Power Generating Modules > 50 kW and also for Synchronous Power Generating Modules ≤ 50 kW where the approach of this form is preferred to that in Form A2-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Form A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules</td>
<td></td>
</tr>
<tr>
<td>A.2</td>
<td>Additional Compliance and Commissioning test requirements for Type A Power Generating Modules</td>
<td>Form A2-4: Site Compliance and Commissioning test requirements for Type A Power Generating Modules</td>
</tr>
<tr>
<td>A.3</td>
<td>Installation and Commissioning a Power Generating Facility comprising one or more Type A Generating Modules</td>
<td>Form A3-1: Installation Document for Type A Power Generating Modules</td>
</tr>
<tr>
<td></td>
<td>Form A3-2: Installation Document for Integrated Micro Generation and Storage installations</td>
<td></td>
</tr>
<tr>
<td>A.4</td>
<td>Emerging Technologies and other Exceptions</td>
<td></td>
</tr>
<tr>
<td>A.5</td>
<td>Example calculations to determine if unequal generation across different phases is acceptable or not</td>
<td></td>
</tr>
<tr>
<td>A.6</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>A.7</td>
<td>Requirements for Type Testing Type A Power Generating Modules</td>
<td></td>
</tr>
<tr>
<td>B.1</td>
<td>Application</td>
<td>Refer to Standard Application Form</td>
</tr>
<tr>
<td>B.2-1</td>
<td>Compliance documentation for Type B Power Generating Modules</td>
<td>Form B2-1: Power Generating Module Document for Type B Power Generating Modules</td>
</tr>
<tr>
<td>B.2-2</td>
<td>Additional Compliance and Commissioning test requirements for Power Generating Modules</td>
<td>Form B2-2 Site Compliance and Commissioning test requirements for Type B Power Generating Modules</td>
</tr>
<tr>
<td>B.3</td>
<td>Installation and Commissioning Confirmation Form</td>
<td>Form B2: Installation and Commissioning Confirmation Form for Type B Power Generating Modules</td>
</tr>
<tr>
<td>B.4</td>
<td>Simulation Studies for Type B Power Generating Modules</td>
<td></td>
</tr>
<tr>
<td>B.5</td>
<td>Compliance Testing of Type B Synchronous Power Generating Modules</td>
<td></td>
</tr>
<tr>
<td>B.6</td>
<td>Compliance testing of Type B Power Park Modules</td>
<td></td>
</tr>
<tr>
<td>B.7</td>
<td>Remote Telemetry Units and Control</td>
<td></td>
</tr>
<tr>
<td>B.8</td>
<td>Complex Site Signals</td>
<td></td>
</tr>
<tr>
<td>B.9</td>
<td>Emergency Voltage Control example</td>
<td></td>
</tr>
<tr>
<td>B.10</td>
<td>Controllability Test</td>
<td>Form B10: Controllability Test Form for Type B Power Generating Modules</td>
</tr>
<tr>
<td>C.1</td>
<td>Application</td>
<td>Refer to Standard Application Form</td>
</tr>
<tr>
<td>C.2-1</td>
<td>Compliance Documentation for Type C and Type D Synchronous Power Generating Modules</td>
<td>Form C2-1: Power Generating Module Document for Type C and Type D Synchronous Power Generating Modules</td>
</tr>
<tr>
<td>C.2-2</td>
<td>Additional Compliance and Commissioning test requirements for Power Generating Modules</td>
<td>Form C2-2 Site Compliance and Commissioning test requirements for Type C and Type D Synchronous Power Generating Modules</td>
</tr>
<tr>
<td>C.3</td>
<td>Installation and Commissioning Confirmation Form</td>
<td>Form C3: Installation and Commissioning Confirmation Form for Type C and Type D Power Generating Modules</td>
</tr>
<tr>
<td>C.4</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>C.5</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>C.6</td>
<td>Functional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specification for Fault Recording and Power Quality Monitoring Equipment Studies for Type C and Type D Power Generating Modules</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>C.7</td>
<td>Simulation Studies for Type C and Type D Power Generating Modules</td>
<td></td>
</tr>
<tr>
<td>C.8</td>
<td>Compliance Testing of Type C and Type D Synchronous Power Generating Modules</td>
<td></td>
</tr>
<tr>
<td>C.9</td>
<td>Not used.</td>
<td></td>
</tr>
<tr>
<td>C.10</td>
<td>Not used.</td>
<td></td>
</tr>
<tr>
<td>D.1</td>
<td>Decommissioning of any Power Generating Module Form D1: Decommissioning Confirmation</td>
<td></td>
</tr>
<tr>
<td>D.2</td>
<td>Additional Information Relating to System Stability Studies</td>
<td></td>
</tr>
<tr>
<td>D.3</td>
<td>Loss of Mains Protection Analysis</td>
<td></td>
</tr>
<tr>
<td>D.4</td>
<td>Main Statutory and other Obligations</td>
<td></td>
</tr>
</tbody>
</table>
Annex A – Type A

A.0 Type A Power Generating Module Forms Cover Sheet

A number of forms are required to be completed and submitted to the DNO for the connection of **Type A Power Generating Modules** and any subsequent **Modifications** to equipment, and/or permanent decommissioning. These are summarised in the table below.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Form</th>
<th>Notes / Description</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Find an Installer</td>
<td>N/A</td>
<td>The first task is to find a competent Installer. For Power Generating Modules ≤ 50 kW, certified generation products and installers can be found on the following website: www.microgenerationcertification.org</td>
<td>Complete</td>
</tr>
<tr>
<td>2. Discuss with the DNO</td>
<td>N/A</td>
<td>At this stage you could look for supporting information published on the DNO’s website, as this can be a valuable resource; and discuss your plans with the DNO before starting work, including issues such as feasibility and potential charges.</td>
<td>Complete</td>
</tr>
<tr>
<td>3. Submit application</td>
<td>Form A1-2: Application Form (Integrated Micro Generation and Storage) OR Standard Application Form</td>
<td>Submit an application, so that the DNO can assess whether there is a requirement for network studies and network reinforcement, and whether it wants to witness the commissioning. For Integrated Micro Generation and Storage installations, Form A1-2 should be used. For larger schemes, the Standard Application Form should be used, which is generally available on DNO websites.</td>
<td>Complete</td>
</tr>
<tr>
<td>4. Application acceptance</td>
<td>N/A</td>
<td>If the DNO determines that network reinforcement is required to facilitate connecting your PGMs, it will make you a Connection Offer. Once you have accepted the DNO’s Connection Offer, construction can begin.</td>
<td>Complete</td>
</tr>
<tr>
<td>5. Compliance</td>
<td>Form A2: Compliance Verification Report</td>
<td>To be provided, unless a Manufacturer’s reference number (the Product ID) is available for Fully Type Tested PGMs (see Section 16.2.1). See the text at the start of Annex A.2 regarding the options for the Compliance Verification Report Form. One Compliance Verification Report is required for each type /</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Power Generating Module Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form A2-1</td>
<td>Suitable for Synchronous Power Generating Modules less than 50 kW and greater than 16 A per phase.</td>
</tr>
<tr>
<td>Form A2-2</td>
<td>Suitable for Power Generating Modules greater than 50 kW or for Synchronous Power Generating Modules <50 kW where this approach is preferred to Form A2-1.</td>
</tr>
<tr>
<td>Form A2-3</td>
<td>Designed for Power Park Modules (excepting induction generators who are advised to use A2-1 or A2-2 as appropriate).</td>
</tr>
</tbody>
</table>

Construction and Commissioning

6. **Construction and commissioning**

<table>
<thead>
<tr>
<th>Form</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-4 Site Compliance and Commissioning test requirements</td>
<td>Where the DNO does not witness commissioning, the form should be submitted within 28 days. Where the DNO does witness, the forms can be signed and submitted on the day.</td>
</tr>
</tbody>
</table>

7. **Inform the DNO**

<table>
<thead>
<tr>
<th>Form</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3-1 Installation Document for Type A Power Generating Modules OR A3-2 Installation Document for Integrated Micro Generation and Storage installations</td>
<td>Submit one form per Power Generating Facility, signed by the Generator and Installer, with declarations signed by the Generator or Generator’s Technical Representative, (and the DNO Witness Representative where the DNO has elected to witness).</td>
</tr>
</tbody>
</table>

8. **Ongoing responsibilities**

<table>
<thead>
<tr>
<th>Modification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a Modification is made to the PGM that affects its technical capabilities and compliance with this document, the Generator should inform the DNO who may require compliance tests.</td>
<td></td>
</tr>
</tbody>
</table>

9. **Decommissioning**

<table>
<thead>
<tr>
<th>(D0) Notification of decommissioning</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notify the DNO about the permanent decommissioning of a PGM.</td>
<td></td>
</tr>
</tbody>
</table>

The forms have been designed with the same format of **Generator** and **Installer** information at the top of each form. If you are completing forms electronically, this will allow you to copy and paste your information from one form to another, as you move through the stages of the connection process, unless you need to update your contact details.
A.1 Connection Application Form for Integrated Micro Generation and Storage (Form A1-2)

Form A1-2 : Application for connection of Integrated Micro Generation and Storage installations

For Integrated Micro Generation and Storage installations, this simplified application form can be used where all of the following eligibility criteria apply:

- The Power Generating Modules are located in a single Generator’s Installation;
- The total aggregate capacity of the Power Generating Modules (including Electricity Storage devices) is between 16 A and 32 A per phase;
- The total aggregate capacity of the Power Generating Modules that are Electricity Storage devices do not exceed 16 A per phase and the total aggregate capacity of the Power Generating Modules that are not Electricity Storage devices do not exceed 16 A per phase. Note that if the total aggregated capacity of Electricity Storage and non-Electricity Storage devices is no greater than 16 A per phase, the single premises procedure described in EREC G98/NI applies;
- All of the Power Generating Modules (including Electricity Storage units) are connected via EREC G98/NI Type Tested Invertors (or EREC G83 Type Tested Invertors, where the Power Generating Module was installed prior to 27th April 2019);
- An EREC G100 compliant export limitation scheme is present that limits the export from the Generator’s Installation to the Distribution Network to 16 A per phase; and
- The Power Generating Modules will not operate when there is a loss of mains situation.

DNOs may have their own forms; refer to the DNO’s websites and online application tools. If the Power Generating Module is registered with the ENA Type Test Verification Report Register, the application should include the Manufacturer’s reference number (the Product ID).

If all the eligibility criteria apply the DNO will confirm that the installation can proceed. The planned commissioning date stated on the application shall be within 10 working days and 3 months from the date the application is submitted.

On completion of the installation the Installer shall submit the commissioning sheets, as required in EREC G100 alongside the EREC G99/NI forms.

<table>
<thead>
<tr>
<th>To DNO</th>
<th>ABC electricity distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>9AA</td>
<td>abced@wxyz.com</td>
</tr>
<tr>
<td></td>
<td>99 West St, Imaginary Town, ZZ99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generator Details:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator (name)</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Post Code</td>
<td></td>
</tr>
<tr>
<td>Contact person (if different from Generator)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Telephone number</td>
<td></td>
</tr>
<tr>
<td>E-mail address</td>
<td></td>
</tr>
<tr>
<td>MPRN(s)</td>
<td></td>
</tr>
</tbody>
</table>

Installer Details (Generation):

<table>
<thead>
<tr>
<th>Installer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accreditation / Qualification</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Post Code</td>
<td></td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Telephone Number</td>
<td></td>
</tr>
<tr>
<td>E-mail address</td>
<td></td>
</tr>
</tbody>
</table>

Installer Details (Electricity Storage, if different from above):

<table>
<thead>
<tr>
<th>Installer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accreditation / Qualification</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Post Code</td>
<td></td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Telephone Number</td>
<td></td>
</tr>
<tr>
<td>E-mail address</td>
<td></td>
</tr>
</tbody>
</table>

Installation details:

<table>
<thead>
<tr>
<th>Address</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Code</td>
<td></td>
</tr>
<tr>
<td>MPRN(s)</td>
<td></td>
</tr>
</tbody>
</table>

Details of Existing PGMs – where applicable:
Manufacturer

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Approximate Date of Installation</th>
<th>Technology Type (e.g. Solar, Wind, Biomass, Diesel/CHP)</th>
<th>Manufacturer's Ref No. where available</th>
<th>PGM Registered Capacity (kW) 3-phase units</th>
<th>Single Phase Units</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technology Type

<table>
<thead>
<tr>
<th>Technology Type (e.g. Solar, Wind, Biomass, Diesel/CHP, Electricity Storage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar</td>
</tr>
<tr>
<td>Wind</td>
</tr>
<tr>
<td>Biomass</td>
</tr>
<tr>
<td>Diesel/CHP</td>
</tr>
<tr>
<td>Electricity Storage</td>
</tr>
</tbody>
</table>

Details of Proposed Additional Generating Unit(s) (including Electricity Storage):

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Approximate Date of Installation</th>
<th>Technology Type (e.g. Solar, Wind, Biomass, Diesel/CHP, Electricity Storage)</th>
<th>Manufacturer's Ref No. where available</th>
<th>Generating Unit Registered Capacity (kW) 3-phase units</th>
<th>Single Phase Units</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please confirm all of the statements are true by ticking each box:

- The **Power Generating Modules** are located in a single property.
- The total aggregate capacity of the **Power Generating Modules** (including **Electricity Storage** units) is between 16 A and 32 A per phase.
- The total aggregate capacity of the **Power Generating Modules** that are **Electricity Storage** devices do not exceed 16 A per phase and the total aggregate capacity of the **Power Generating Modules** that are not **Electricity Storage** devices do not exceed 16 A per phase.
- All of the **Power Generating Modules** (including **Electricity Storage** devices) are connected via EREC G98/NI **Type Tested** Inverters (or EREC G83 **Type Tested Invertors**, where the **Power Generating Module** was installed prior to 27th April 2019)
- An EREC G100 compliant export limitation scheme is present that limits the export from the **Generator's Installation** to the **Distribution Network** to 16 A per phase; and
- The **Power Generating Modules** will not operate when there is a loss of mains situation.

The following information should be submitted with the application:

- Copy of single line diagram of export limitation scheme
- Explanation / description of export limitation scheme operation including a description of the fail-safe functionality eg the response of the scheme following failure of a:
 - Power monitoring unit
 - Control unit
 - **Power Generating Module** interface unit
 - Demand control unit
 - Communication equipment
Note, fail-safe tests are not required at installations where all **Generating Units** are EREC G83 or EREC G98/NI **Type Tested**, aggregated capacity is not more than 32 A per phase and export capacity is limited to 16 A per phase.

Additional details:

<table>
<thead>
<tr>
<th>Target date for provision of connection / commissioning of Electricity Storage devices:*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ERECE G100 compliance declaration / EREC G100 Type Test reference as applicable:</td>
<td></td>
</tr>
<tr>
<td>Signed :</td>
<td>Date :</td>
</tr>
</tbody>
</table>

Use continuation sheet where required.

Record **Power Generating Module Registered Capacity** kW at 230 AC, to one decimal place, under PH1 for single phase supplies and under the relevant phase for two and three phase supplies.

Include a schematic diagram for the proposed scheme.

The planned commissioning date shall be at least 10 working days from the date of application but not more than 3 months in advance (connection offers are only valid for 3 months).
A.2 Type A Compliance Verification Report

Where a Synchronous Power Generating Module (assumed to be <50 kW although this is not a mandatory upper limit) is fully integrated as a package and where the Manufacturer wishes to take this approach, the whole package can be tested in a factory environment, for example, on a grid simulator. Form A2-1 in this Annex caters for this approach in describing a methodology for verification or obtaining type certification or for a < 50 kW Synchronous Power Generating Module.

Alternatively, rather than follow Form A2-1 and the requirements of Annex A.7.2.1, Form A2-2 and the tests it requires can be used for compliance of any size of Power Generating Module, including those 50 kW or smaller. It is envisaged that most Synchronous Power Generating Modules will use a conventional approach to compliance verification, for which Form A2-2 is appropriate.

Form A2-3 caters for all Type A asynchronous and Inverter technologies of any size, with the exception of conventional induction Generating Units. Manufacturers of induction Generating Units may find it more appropriate to use forms A2-2 or A2-1 in preference to A2-3.

Figure A.2.1 illustrates the various compliance forms that are applicable to Type A Power Generating Modules.
Figure A.2.1 Compliance requirements for Type A Power Generating Modules
Form A2-1: Compliance Verification Report for Synchronous Power Generating Modules up to and including 50 kW

This form should be used by the Manufacturer to demonstrate and declare compliance with the requirements of EREC G99/NI. The form can be used in a variety of ways as detailed below:

1. **To obtain Fully Type Tested status**

 The Manufacturer can use this form to obtain Fully Type Tested status for a Power Generating Module by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. **To obtain Type Tested status for a product**

 This form can be used by the Manufacturer to obtain Type Tested status for a product which is used in a Power Generating Module by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

3. **One-off Installation**

 This form can be used by the Manufacturer or Installer to confirm that the Power Generating Module has been tested to satisfy all or part of the requirements of this EREC G99/NI. This form shall be submitted to the DNO as part of the application.

 A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the Interface Protection is to be demonstrated on site.

 Note:

 If the Power Generating Module is Fully Type Tested and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the Manufacturer’s reference number (the Product ID), and this form does not need to be submitted.

 Where the Power Generating Module is not registered with the ENA Type Test Verification Report Register or is not Fully Type Tested this form (all or in parts as applicable) needs to be completed and provided to the DNO, to confirm that the Power Generating Module has been tested to satisfy all or part of the requirements of this EREC G99/NI.

<table>
<thead>
<tr>
<th>PGM technology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer name</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Tel.</td>
<td>Web site</td>
</tr>
<tr>
<td>E:mail</td>
<td></td>
</tr>
<tr>
<td>Registered Capacity</td>
<td>kW</td>
</tr>
</tbody>
</table>
There are four options for Testing: (1) **Fully Type Tested**, (2) **Type Tested** product, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested** PGMs tests marked with * may be carried out at the time of commissioning (Form A2-4).

Include reference(s) for **Manufacturers’ Information** including the ENA Type Test Verification Report Register Product ID number where applicable.

<table>
<thead>
<tr>
<th>Tested option:</th>
<th>1. Fully Type Tested</th>
<th>2. Partially Type Tested</th>
<th>3. One-Off Man. Info.</th>
<th>4. Tested on Site at time of Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Fully Type Tested- all tests detailed below completed and evidence attached to this submission</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1. Operating Range</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PQ – Harmonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. PQ – Voltage Fluctuation and Flicker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Power Factor (PF)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Frequency protection trip and ride through tests*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Voltage protection trip and ride through tests*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Protection – Loss of Mains Test*, Vector Shift and RoCoF Stability Test*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. LFSM-O Test*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Power Output with Falling Frequency Test*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Protection – Reconnection Timer*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There are four options for Testing: (1) **Fully Type Tested**, (2) **Type Tested** product, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested** PGMs tests marked with * may be carried out at the time of commissioning (Form A2-4).

Include reference(s) for Manufacturers' Information including the ENA Type Test Verification Report Register Product ID number where applicable.

<table>
<thead>
<tr>
<th>Tested option</th>
<th>1. Fully Type Tested</th>
<th>2. Partially Type Tested</th>
<th>3. One-Off Man. Info.</th>
<th>4. Tested on Site at time of Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Fault Level Contribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Logic Interface (input port)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* may be carried out at the time of commissioning (Form A2-4).

Manufacturer compliance declaration - I certify that all products supplied by the company with the above **Type Tested Manufacturer**'s reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site Modifications are required to ensure that the product meets all the requirements of EREC G99/NI.

Signed

On behalf of

Note that testing can be done by the **Manufacturer** of an individual component (ie product) or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.
A2-1 Compliance Verification Report – Tests for Type A Synchronous Power Generating Modules up to and including 50 kW – test record

1. **Operating Range:** Tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply, grid simulation set or load bank. The power supplied by the primary source shall be kept stable within ± 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

The **Interface Protection** shall be disabled during the tests.

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage = 85% of nominal (195.5 V), Frequency = 47.5 Hz, Power Factor = 1, Period of test 90 minutes</td>
<td>Voltage = 110% of nominal (253 V), Frequency = 51.5 Hz, Power Factor = 1, Period of test 90 minutes</td>
<td>Voltage = 110% of nominal (253 V), Frequency = 52.0 Hz, Power Factor = 1, Period of test 15 minutes</td>
</tr>
</tbody>
</table>
2. Power Quality – Harmonics: The test requirements are specified in A.7.2.5. These tests should be carried out as specified in BS EN 61000-3-12. The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

Power Generating Module tested to BS EN 61000-3-12

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>kVA</th>
<th>Harmonic % = Measured Value (A) x 23/rating per phase (kVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 45-55% of Registered Capacity</td>
<td>100% of Registered Capacity</td>
<td>Limit in BS EN 61000-3-12</td>
</tr>
<tr>
<td>Measured Value (A)</td>
<td>%</td>
<td>Measured Value (A)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21.6%</td>
<td>Not stated</td>
</tr>
<tr>
<td>4</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>5</td>
<td>10.7%</td>
<td>10.7%</td>
</tr>
<tr>
<td>6</td>
<td>2.67%</td>
<td>2.67%</td>
</tr>
<tr>
<td>7</td>
<td>7.2%</td>
<td>7.2%</td>
</tr>
<tr>
<td>8</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>9</td>
<td>3.8%</td>
<td>Not stated</td>
</tr>
<tr>
<td>10</td>
<td>1.6%</td>
<td>1.6%</td>
</tr>
<tr>
<td>11</td>
<td>3.1%</td>
<td>3.1%</td>
</tr>
<tr>
<td>12</td>
<td>1.33%</td>
<td>1.33%</td>
</tr>
<tr>
<td>13</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>THD18</td>
<td>23%</td>
<td>13%</td>
</tr>
<tr>
<td>PWHD19</td>
<td>23%</td>
<td>22%</td>
</tr>
</tbody>
</table>

18 THD = Total Harmonic Distortion

19 PWHD = Partial Weighted Harmonic Distortion
3. Power Quality – Voltage fluctuations and Flicker

These tests should be undertaken in accordance with Annex A.7.2.5.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable maximum impedance.

<table>
<thead>
<tr>
<th></th>
<th>Starting</th>
<th>Stopping</th>
<th>Running</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d max</td>
<td>d c</td>
<td>d(t)</td>
</tr>
<tr>
<td>Measured Values at test impedance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalised to standard impedance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalised to required maximum impedance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limits set under BS EN 61000-3-11</td>
<td>4%</td>
<td>3.3%</td>
<td>3.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Impedance</th>
<th>R</th>
<th>Ω</th>
<th>X</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Impedance</td>
<td>R</td>
<td>0.24 *</td>
<td>0.4 ^</td>
<td>Ω</td>
</tr>
<tr>
<td>Maximum Impedance</td>
<td>R</td>
<td>Ω</td>
<td>X</td>
<td>Ω</td>
</tr>
</tbody>
</table>

* Applies to three phase and split single phase Power Generating Modules.

^ Applies to single phase Power Generating Module and Power Generating Modules using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the Power Factor of the generation output is 0.98 or above.

Normalised value = Measured value x reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω.

Two phase units in a three phase system reference source resistance is 0.4 Ω.

Two phase units in a split phase system reference source resistance is 0.24 Ω.

Three phase units reference source resistance is 0.24 Ω.
Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to comply with the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

<table>
<thead>
<tr>
<th>Test start date</th>
<th>Test end date</th>
<th>Test location</th>
</tr>
</thead>
</table>

4. Power Factor: The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity**. Voltage to be maintained within ±1.5% of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.2.5.2.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>0.94 pu (216.2 V)</th>
<th>1.0 pu (230 V)</th>
<th>1.1 pu (253 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Factor Limit</td>
<td>>0.95</td>
<td>>0.95</td>
<td>>0.95</td>
</tr>
<tr>
<td>Power Factor Limit</td>
<td>>0.98</td>
<td>>0.98</td>
<td>>0.98</td>
</tr>
</tbody>
</table>

5. Protection – Frequency tests: These tests should be carried out in accordance with Annex A.7.2.2.3.

<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
<th>Trip test</th>
<th>"No trip tests"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Time delay</td>
<td>Frequency</td>
<td>Time delay</td>
</tr>
<tr>
<td>U/F</td>
<td>48.0 Hz</td>
<td>0.5 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O/F</td>
<td>52 Hz</td>
<td>1.0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.2.2.2.

<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
<th>Trip test</th>
<th>"No trip tests"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Time delay</td>
<td>Voltage</td>
<td>Time delay</td>
</tr>
<tr>
<td>U/V stage 1</td>
<td>195.5 V</td>
<td>3.0 s</td>
<td>199.5 V</td>
</tr>
<tr>
<td>U/V stage 2</td>
<td>138.0 V</td>
<td>2 s</td>
<td>142.0 V</td>
</tr>
<tr>
<td>O/V</td>
<td>253 V</td>
<td>0.5 s</td>
<td>249 V</td>
</tr>
</tbody>
</table>

7. Protection – Loss of Mains test

The tests are to be carried out at three output power levels ±5%. These tests should be carried out in accordance with Annex A.7.2.2.4. To be carried out at three output power levels with a tolerance of ± 5% in Test Power levels.

<table>
<thead>
<tr>
<th>Test Power (% of Registered Capacity)</th>
<th>10%</th>
<th>55%</th>
<th>100%</th>
<th>10%</th>
<th>55%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balancing load on islanded network</td>
<td>95% of Test Power</td>
<td>95% of Test Power</td>
<td>95% of Test Power</td>
<td>105% of Test Power</td>
<td>105% of Test Power</td>
<td>105% of Test Power</td>
</tr>
</tbody>
</table>

Trip time.
Limit is 0.5 s

For Multi phase Power Generating Modules confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

<table>
<thead>
<tr>
<th>Test Power (% of Registered Capacity)</th>
<th>10%</th>
<th>55%</th>
<th>100%</th>
<th>10%</th>
<th>55%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balancing load on islanded network</td>
<td>95% of Test Power</td>
<td>95% of Test Power</td>
<td>95% of Test Power</td>
<td>105% of Test Power</td>
<td>105% of Test Power</td>
<td>105% of Test Power</td>
</tr>
</tbody>
</table>

Trip time.
Ph1 fuse removed

<table>
<thead>
<tr>
<th>Test Power (% of Registered Capacity)</th>
<th>10%</th>
<th>55%</th>
<th>100%</th>
<th>10%</th>
<th>55%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balancing load on islanded network</td>
<td>95% of Test Power</td>
<td>95% of Test Power</td>
<td>95% of Test Power</td>
<td>105% of Test Power</td>
<td>105% of Test Power</td>
<td>105% of Test Power</td>
</tr>
</tbody>
</table>

Trip time.
Ph2 fuse removed
Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.2.2.6.

<table>
<thead>
<tr>
<th>Positive Vector Shift</th>
<th>Start Frequency</th>
<th>Change</th>
<th>Confirm no trip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49.5 Hz</td>
<td>+50 degrees</td>
<td></td>
</tr>
</tbody>
</table>

Loss of Mains Protection, RoCoF Stability test: This test should be carried out in accordance with Annex A.7.2.2.6.

<table>
<thead>
<tr>
<th>Ramp range</th>
<th>Test frequency ramp:</th>
<th>Test Duration</th>
<th>Confirm no trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.0 Hz to 51.0 Hz</td>
<td>+0.95 Hzs⁻¹</td>
<td>2.1 s</td>
<td></td>
</tr>
<tr>
<td>51.0 Hz to 49.0 Hz</td>
<td>-0.95 Hzs⁻¹</td>
<td>2.1 s</td>
<td></td>
</tr>
</tbody>
</table>

8. Limited Frequency Sensitive Mode – Over frequency test: The test should be carried out using the specific threshold frequency of 50.2 Hz and Droop of 4%.

This test should be carried out in accordance with Annex A.7.2.4.

Active Power response to rising frequency/time plots are attached Y/N

9. Power output with falling frequency test

Tests should prove that the Power Generating Module does not reduce output power as the frequency falls. These tests should be carried out in accordance with Annex A.7.2.3 and under steady state conditions.

<table>
<thead>
<tr>
<th>Test sequence</th>
<th>Measured Active Power Output</th>
<th>Acceptable Active Power</th>
<th>Primary power source (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.5 Hz for 5 minutes</td>
<td>100% Registered Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.5 Hz for 5 minutes</td>
<td>99% Registered Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.0 Hz for 5 minutes</td>
<td>97% Registered Capacity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
47.6 Hz for 5 minutes & 96.2% Registered Capacity
47.1 Hz for 20 s & 95% Registered Capacity

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test should prove that the reconnection sequence starts after a minimum delay of 60 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time delay setting</th>
<th>Measured delay</th>
<th>Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At 257.0 V</td>
<td>At 191.5 V</td>
</tr>
<tr>
<td>Confirmation that the Power Generating Module does not reconnect.</td>
<td>At 47.9 Hz</td>
<td>At 52.1 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Fault level contribution: Manufacturers’ Information in respect of the fault level contribution shall be provided.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Wiring functional tests: If required by para 15.2.1,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Logic interface (input port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm that an input port is provided and can be used to shut down the module.</td>
</tr>
</tbody>
</table>

| Additional comments |
Form A2-2: Compliance Verification Report for Synchronous Power Generating Modules > 50 kW and also for Synchronous Power Generating Modules ≤ 50 kW where the approach of this form is preferred to that in Form A2-1

This form should be used by the Manufacturer to demonstrate and declare compliance with the requirements of EREC G99/NI. The form can be used in a variety of ways as detailed below:

1. **To obtain Fully Type Tested status**

 The Manufacturer can use this form to obtain Fully Type Tested status for a Power Generating Module by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. **To obtain Type Tested status for a product**

 This form can be used by the Manufacturer to obtain Type Tested status for a product which is used in a Power Generating Module by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

3. **One-off Installation**

 This form can be used by the Manufacturer or Installer to confirm that the Power Generating Module has been tested to satisfy all or part of the requirements of this EREC G99/NI. This form shall be submitted to the DNO as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the Interface Protection is to be demonstrated on site.

Note:

If the Power Generating Module is Fully Type Tested and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the Manufacturer’s reference number (the Product ID), and this form does not need to be submitted.

Where the Power Generating Module is not registered with the ENA Type Test Verification Report Register or is not Fully Type Tested this form (all or in parts as applicable) needs to be completed and provided to the DNO, to confirm that the Power Generating Module has been tested to satisfy all or part of the requirements of this EREC G99/NI.

PGM technology	[]
Manufacturer name	[]
Address	[]
Tel	Web site
E:mail	[]
Registered Capacity, use separate sheet if more than one connection option.	kW
There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested** PGMs tests marked with * may be carried out at the time of commissioning (Form A4).

Insert reference for **Manufacturers’ Information** including the ENA Type Test Verification Report Register Product ID number where applicable:

<table>
<thead>
<tr>
<th>Tested option:</th>
<th>1. Fully Type Tested</th>
<th>2. Partially Type Tested</th>
<th>3. One-Off Man. Info.</th>
<th>4. Tested on Site at time of Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Fully Type Tested - all tests detailed below completed and evidence attached to this submission</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1. Operating Range</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PQ – Harmonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. PQ – Voltage Fluctuation and Flicker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Power Factor (PF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Frequency protection trip and ride through tests*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Voltage protection trip and ride through tests*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Protection – Loss of Mains Test, Vector Shift and RoCoF Stability Test*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. LFSM-O Test*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Power Output with Falling Frequency Test*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Protection – Reconnection Timer*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Fault Level Contribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested** PGMs tests marked with * may be carried out at the time of commissioning (Form A4).

Insert reference for **Manufacturers’ Information** including the ENA Type Test Verification Report Register Product ID number where applicable:

<table>
<thead>
<tr>
<th>Tested option:</th>
<th>1. Fully Type Tested</th>
<th>2. Partially Type Tested</th>
<th>3. One-Off Man. Info.</th>
<th>4. Tested on Site at time of Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Wiring functional test if required by paragraph 15.2.1 (attach relevant schedule of tests)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Logic Interface (input port)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* may be carried out at the time of commissioning (Form A2-4).

Manufacturer compliance declaration. - I certify that all products supplied by the company with the above **Type Tested Manufacturer**’s reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site **Modifications** are required to ensure that the product meets all the requirements of EREC G99/NI.

Signed | On behalf of

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.
A2-2 Compliance Verification Report – Tests for Type A Synchronous Power Generating Modules > 50 kW and also for Synchronous Power Generating Modules ≤ 50 kW where the approach of this form is preferred to that in Form A2-1 – Test record

1. **Operating Range:** Tests should be carried with the Power Generating Module operating at Registered Capacity and connected to a suitable load bank, test supply, or grid simulation set. The power supplied by the primary source shall be kept stable within ± 5% of the apparent power value set for the entire duration of each test sequence.

 Frequency, voltage and Active Power measurements at the output terminals of the Power Generating Module shall be recorded every second. The tests will verify that the Power Generating Module can operate within the required ranges for the specified period of time.

 The Interface Protection shall be disabled during the tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Voltage</th>
<th>Frequency</th>
<th>Power Factor</th>
<th>Period of test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>85% of nominal (195.5 V),</td>
<td>47.5 Hz,</td>
<td>1,</td>
<td>90 minutes</td>
</tr>
<tr>
<td>Test 2</td>
<td>110% of nominal (253 V),</td>
<td>51.5 Hz,</td>
<td>1,</td>
<td>90 minutes</td>
</tr>
<tr>
<td>Test 3</td>
<td>110% of nominal (253 V),</td>
<td>52.0 Hz,</td>
<td>1,</td>
<td>15 minutes</td>
</tr>
</tbody>
</table>

2. **Power Quality – Harmonics:**

 The installation shall be designed in accordance with EREC G5. For Power Generating Modules of up to 17 kW per phase or 50 kW three phase harmonic measurements as required by BS EN 61000-3-12 shall be made and recorded in a test declaration as in Form A2-1. The relevant part of Form A2-1 can be used for this purpose.
3. Power Quality – Voltage fluctuations and Flicker:

The installation shall be designed in accordance with EREC P28.

For Power Generating Modules of up to 17 kW per phase or 50 kW three phase the voltage fluctuations and flicker emissions from the Generating Unit shall be measured in accordance with BS EN 61000-3-11. The relevant part of Form A2-1 can be used for recording the measurements.

4. Power Factor: Manufacturers’ Information shall be provided or factory test results or on site testing in respect of the operation of the control system at 0.94 pu V, 1.0 pu V and 1.1 pu V shall be undertaken. The test can be undertaken by stepping the network voltage such as via an appropriate transformer/tap changer, or alternatively by injecting a test voltage signal into the Controller.

This test shall be undertaken with the Controller in constant Power Factor mode and a set point of 1.0.

The tests are successful if the Power Factor is > 0.95 leading and > 0.98 lagging.

5. Protection operation and stability – Frequency tests: See Form A2-4.

6. Protection operation and stability – Voltage tests: See Form A2-4 for LV or HV as applicable.

8. Limited Frequency Sensitive Mode – Over frequency test: The tests below should be carried out using the specific threshold frequency of 50.2 Hz and Droop of 4% in accordance with paragraph 11.2.4.

The tests should be carried out in accordance with Annex A.7.2.4

<table>
<thead>
<tr>
<th>Active Power response to rising frequency/time plots are attached</th>
<th>Y/N</th>
</tr>
</thead>
</table>

Tests should prove that the Power Generating Module does not reduce output power as the frequency falls. These tests should be carried out in accordance with Annex A.7.2.3 and under steady state conditions.

<table>
<thead>
<tr>
<th>Test sequence</th>
<th>Measured Active Power Output</th>
<th>Acceptable Active Power</th>
<th>Primary power source (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.5 Hz for 5 minutes</td>
<td>100% Registered Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.5 Hz for 5 minutes</td>
<td>99% Registered Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.0 Hz for 5 minutes</td>
<td>97% Registered Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.6 Hz for 5 minutes</td>
<td>96.2% Registered Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.1 Hz for 20 s</td>
<td>95% Registered Capacity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test should prove that the reconnection sequence starts after a minimum delay of 60 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1.

<table>
<thead>
<tr>
<th>Time delay setting</th>
<th>Measured delay</th>
<th>Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At 257.0 V</td>
</tr>
<tr>
<td>Confirmation that the Power Generating Module does not re-connect.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Fault level contribution: Manufacturers’ Information

In respect of the fault level contribution shall be provided.

12. Wiring functional tests: If required by para 15.2.1.

Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning).

<table>
<thead>
<tr>
<th>Confirmation</th>
<th>Yes / NA</th>
</tr>
</thead>
</table>

Yes / NA

13. Logic interface (input port).

Confirm that an input port is provided and can be used to shut down the module.

<table>
<thead>
<tr>
<th>Confirmation</th>
<th>Yes / NA</th>
</tr>
</thead>
</table>

Yes / NA

Additional comments.
Form A2-3: Compliance Verification Report for Type A Inverter Connected Power Generating Modules

This form should be used by the Manufacturer to demonstrate and declare compliance with the requirements of EREC G99/NI. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

 The Manufacturer can use this form to obtain Fully Type Tested status for a Power Generating Module by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. To obtain Type Tested status for a product

 This form can be used by the Manufacturer to obtain Type Tested status for a product which is used in a Power Generating Module by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

3. One-off Installation

 This form can be used by the Manufacturer or Installer to confirm that the Power Generating Module has been tested to satisfy all or part of the requirements of this EREC G99/NI. This form shall be submitted to the DNO as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the Interface Protection is to be demonstrated on site.

Note:

Within this Form A2-3 the term Power Park Module will be used but its meaning can be interpreted within Form A2-3 to mean Power Park Module, Generating Unit or Inverter as appropriate for the context. However, note that compliance shall be demonstrated at the Power Park Module level.

If the Power Generating Module isFully Type Tested and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the Manufacturer's reference number (the Product ID), and this form does not need to be submitted.

Where the Power Generating Module is not registered with the ENA Type Test Verification Report Register or is not Fully Type Tested this form (all or in parts as applicable) needs to be completed and provided to the DNO, to confirm that the Power Generating Module has been tested to satisfy all or part of the requirements of this EREC G99/NI.

<table>
<thead>
<tr>
<th>PGM technology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer name</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Tel</td>
<td>Web site</td>
</tr>
<tr>
<td>E:mail</td>
<td></td>
</tr>
<tr>
<td>Registered Capacity</td>
<td>kW</td>
</tr>
</tbody>
</table>
There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested** PGMs tests marked with "*" may be carried out at the time of commissioning (Form A4).

Insert Document reference(s) for **Manufacturers’ Information**

<table>
<thead>
<tr>
<th>Tested option:</th>
<th>1. Fully Type Tested</th>
<th>2. Partially Type Tested</th>
<th>3. One-off Man. Info.</th>
<th>4. Tested on Site at time of Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Fully Type Tested - all tests detailed below completed and evidence attached to this submission</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1. Operating Range</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PQ – Harmonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. PQ – Voltage Fluctuation and Flicker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. PQ – DC Injection (Power Park Modules only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Power Factor (PF)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Frequency protection trip and ride through tests*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Voltage protection trip and ride through tests*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Protection – Loss of Mains Test*, Vector Shift and RoCoF Stability Test*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. LFSM-O Test*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Protection – Reconnection Timer*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Fault Level Contribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12. Self-monitoring Solid State Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Logic Interface (input port)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* may be carried out at the time of commissioning (Form A.2-4).

Manufacturer compliance declaration. - I certify that all products supplied by the company with the above Type Tested Manufacturer's reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site Modifications are required to ensure that the product meets all the requirements of EREC G99/NI.

Signed	On behalf of

Note that testing can be done by the Manufacturer of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the Manufacturer then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.
A2-3 Compliance Verification Report – Tests for Type A Inverter Connected Power Generating Modules – test record

1. **Operating Range**: Tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within ± 5% of the apparent power value set for the entire duration of each test sequence.

 Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

 The **Interface Protection** shall be disabled during the tests.

 In case of a PV **Power Park Module** the PV primary source may be replaced by a DC source.

 In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover **inverter/rectifier** may be replaced by a DC source.

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Voltage = 85% of nominal (195.5 V), Frequency = 47.5 Hz, Power Factor = 1, Period of test 90 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 2</td>
<td>Voltage = 110% of nominal (253 V), Frequency = 51.5 Hz, Power Factor = 1, Period of test 90 minutes</td>
</tr>
<tr>
<td>Test 3</td>
<td>Voltage = 110% of nominal (253 V), Frequency = 52.0 Hz, Power Factor = 1, Period of test 15 minutes</td>
</tr>
</tbody>
</table>
2. Power Quality – Harmonics:

For Power Generating Modules of Registered Capacity of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12. The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment. Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the Power Generating Module in order to accept the connection to a Distribution Network.

For Power Generating Modules of Registered Capacity of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC G5.

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>At 45-55% of Registered Capacity</th>
<th>100% of Registered Capacity</th>
<th>Limit in BS EN 61000-3-12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured Value (A)</td>
<td>%</td>
<td>Measured Value (A)</td>
</tr>
<tr>
<td>2</td>
<td>8%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21.6%</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10.7%</td>
<td>10.7%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.67%</td>
<td>2.67%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.2%</td>
<td>7.2%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.8%</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.6%</td>
<td>1.6%</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.1%</td>
<td>3.1%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.33%</td>
<td>1.33%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>THD(^{20})</td>
<td>23%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>PWHD(^{21})</td>
<td>23%</td>
<td>22%</td>
<td></td>
</tr>
</tbody>
</table>

\(^{20}\) THD = Total Harmonic Distortion

\(^{21}\) PWHD = Partial Weighted Harmonic Distortion
3. Power Quality – Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC P28.

<table>
<thead>
<tr>
<th>Starting</th>
<th>Stopping</th>
<th>Running</th>
</tr>
</thead>
<tbody>
<tr>
<td>d max</td>
<td>d c</td>
<td>d(t)</td>
</tr>
</tbody>
</table>

Measured Values at test impedance

<table>
<thead>
<tr>
<th>Normalised to standard impedance</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Normalised to required maximum impedance</th>
</tr>
</thead>
</table>

| Limits set under BS EN 61000-3-11 | 4% | 3.3% | 3.3% | 4% | 3.3% | 3.3% | 1.0 | 0.65 |

Test Impedance

<table>
<thead>
<tr>
<th>R</th>
<th>Ω</th>
<th>XI</th>
<th>Ω</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Standard Impedance</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Maximum Impedance</th>
</tr>
</thead>
</table>

* Applies to three phase and split single phase **Power Generating Modules**.

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the **Power Factor** of the generation output is 0.98 or above.

Normalised value = Measured value x reference source resistance/measured source resistance at test point

Single phase units reference source resistance is 0.4 Ω
Two phase units in a three phase system reference source resistance is 0.4 Ω

Two phase units in a split phase system reference source resistance is 0.24 Ω

Three phase units reference source resistance is 0.24 Ω

Where the **Power Factor** of the output is under 0.98 then the Xl to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to comply with the particular requirements set out in the testing notes for the technology under test.

<table>
<thead>
<tr>
<th>Test start date</th>
<th>Test end date</th>
</tr>
</thead>
</table>

4. **Power quality – DC injection**: The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels ±5%. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

<table>
<thead>
<tr>
<th>Test power level</th>
<th>10%</th>
<th>55%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded value in Amps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as % of rated AC current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
</tr>
</tbody>
</table>

5. **Power Factor**: The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity**. Voltage to be maintained within ±1.5% of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>0.94 pu (216.2 V)</th>
<th>1 pu (230 V)</th>
<th>1.1 pu (253 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Factor Limit –</td>
<td>>0.95</td>
<td>>0.95</td>
<td>>0.95</td>
</tr>
<tr>
<td>Power Factor Limit –</td>
<td>>0.98</td>
<td>>0.98</td>
<td>>0.98</td>
</tr>
</tbody>
</table>

6. **Protection – Frequency tests**: These tests should be carried out in accordance with the Annex A.7.1.2.3.

<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
<th>Trip test</th>
<th>“No trip tests”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Time delay</td>
<td>Frequency</td>
<td>Time delay</td>
</tr>
<tr>
<td>U/F</td>
<td>48.0 Hz</td>
<td>0.5 s</td>
<td>48.2 Hz 25 s</td>
</tr>
<tr>
<td></td>
<td>47.8 Hz 0.45 s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The “No trip tests” need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests:
These tests should be carried out in accordance with Annex A.7.1.2.2.

<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
<th>Trip test</th>
<th>“No trip tests”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Voltage</td>
<td>Time delay</td>
<td>Voltage</td>
</tr>
<tr>
<td>U/V stage 1</td>
<td>195.5 V</td>
<td>3.0 s</td>
<td>199.5 V</td>
</tr>
<tr>
<td>U/V stage 2</td>
<td>138.0 V</td>
<td>2 s</td>
<td>142.0 V</td>
</tr>
<tr>
<td>O/V</td>
<td>253 V</td>
<td>0.5 s</td>
<td>249 V</td>
</tr>
</tbody>
</table>

Note for Voltage tests the Voltage required to trip is the setting ±3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ±4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8. Protection – Loss of Mains test:
These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

<table>
<thead>
<tr>
<th>Test Power and imbalance</th>
<th>Test 22</th>
<th>Test 12</th>
<th>Test 5</th>
<th>Test 31</th>
<th>Test 21</th>
<th>Test 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>33% -5% Q</td>
<td>66% -5% Q</td>
<td>100% -5% P</td>
<td>33% +5% Q</td>
<td>66% +5% Q</td>
<td>100% +5% P</td>
<td></td>
</tr>
</tbody>
</table>

Trip time. Limit is 0.5s
Loss of Mains Protection, Vector Shift Stability test

This test should be carried out in accordance with Annex A.7.1.2.6.

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Change</th>
<th>Confirm no trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Vector Shift</td>
<td>49.5 Hz</td>
<td>+50 degrees</td>
</tr>
<tr>
<td>Negative Vector Shift</td>
<td>50.5 Hz</td>
<td>-50 degrees</td>
</tr>
</tbody>
</table>

Loss of Mains Protection, RoCoF Stability test

This test should be carried out in accordance with Annex A.7.1.2.6.

<table>
<thead>
<tr>
<th>Ramp range</th>
<th>Test frequency ramp:</th>
<th>Test Duration</th>
<th>Confirm no trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.0 Hz to 51.0 Hz</td>
<td>+0.95 Hzs(^{-1})</td>
<td>2.1 s</td>
<td></td>
</tr>
<tr>
<td>51.0 Hz to 49.0 Hz</td>
<td>-0.95 Hzs(^{-1})</td>
<td>2.1 s</td>
<td></td>
</tr>
</tbody>
</table>

9. Limited Frequency Sensitive Mode – Over frequency test

The test should be carried out using the specific threshold frequency of 50.2 Hz and Droop of 4%.

This test should be carried out in accordance with Annex A.7.1.3.

Active Power

Response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex A.7.2.4.

Alternatively, simulation results should be noted below:

<table>
<thead>
<tr>
<th>Test sequence at Registered Capacity >80%</th>
<th>Measured Active Power Output</th>
<th>Frequency</th>
<th>Primary Power Source</th>
<th>Active Power Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step a) 50.00Hz ±0.01Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step b) 50.25Hz ±0.05Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step c) 50.70Hz ±0.10Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step d) 51.15Hz ±0.05Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step e) 50.70Hz ±0.10Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step f) 50.25Hz ±0.05Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step g) 50.00Hz ±0.01Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Y/N

Test should prove that the reconnection sequence starts after a minimum delay of 60 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1.

<table>
<thead>
<tr>
<th>Time delay setting</th>
<th>Measured delay</th>
<th>Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At 257.0 V</td>
</tr>
<tr>
<td>Confirmation that the Power Generating Module does not re-connect.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Fault level contribution: These tests shall be carried out in accordance with EREC G99/NI Annex A.7.1.5.

For **Inverter** output

<table>
<thead>
<tr>
<th>Time after fault</th>
<th>Volts</th>
<th>Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to trip</td>
<td></td>
<td>In seconds</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

It has been verified that in the event of the solid state switching device failing to disconnect the **Power Park Module**, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s. | Yes / NA |

|-----------------------------|-------------------------------|

Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning) | Yes / NA |

<table>
<thead>
<tr>
<th>14. Logic interface (input port).</th>
<th></th>
</tr>
</thead>
</table>

Confirm that an input port is provided and can be used to shut down the module. | Yes / NA |

Additional comments.
Site Compliance and Commissioning test requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliance by provision of Manufacturers’ Information or type test reports. Reference number should be detailed and Manufacturers’ Information attached.</th>
<th>Compliance by commissioning tests</th>
<th>Tick if true and complete relevant sections of form below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over and under voltage protection LV – calibration test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and under voltage protection LV – stability test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and under voltage protection HV – calibration test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and under voltage protection HV – stability test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and Under Frequency protection – calibration test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and Under Frequency protection - stability test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of mains protection – calibration test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of mains protection – stability test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring functional tests: If required by para 15.2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Over and Under Voltage Protection Tests LV

Where the **Connection Point** is at **LV** the **Generator** shall demonstrate compliance with this EREC G99/NI in respect of Over and Under Voltage Protection by provision of **Manufacturers’ Information**, type test reports or by undertaking the following tests on site. **LV**: 400 V.

Calibration and Accuracy Tests

<table>
<thead>
<tr>
<th>Phase</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Pickup Voltage</th>
<th>Relay Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower Limit</td>
<td>Measured Value³</td>
</tr>
<tr>
<td>Over Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 – L2</td>
<td>1.10 pu</td>
<td>0.5 s</td>
<td>438.35</td>
<td>Pass/ Fail</td>
</tr>
<tr>
<td>L2 – L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 – L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Under Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 – L2</td>
<td>0.85 pu</td>
<td>3.0 s</td>
<td>338.35</td>
<td>Pass/ Fail</td>
</tr>
<tr>
<td>L2 – L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 – L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 2 Under Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 – L2</td>
<td>0.60 pu</td>
<td>2.0 s</td>
<td>238.35</td>
<td>Pass/ Fail</td>
</tr>
<tr>
<td>L2 – L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 – L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Measured Value – Pickup Voltage**: Nominal voltages applied to the protection and slowly increase/decrease in steps no greater than 0.5% of the voltage setting. Pickup voltage within ±1.65 V of setting value.

2. **Measured Value – Relay Operating Time**: Stepping test voltage from nominal value to 2 V above/below the measured pickup voltage. Relay operating time to be no shorter than lower limit and no greater than upper limit.
Over and Under Voltage Protection Tests LV

Stability Tests

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Setting</th>
<th>Time</th>
<th>Delay</th>
<th>Test Condition (3-Phase Value)</th>
<th>Test Voltage all phases ph-n</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>< OV</td>
<td>249.0 V</td>
<td>5.00 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Over Voltage</td>
<td>253.0 V</td>
<td>1.0 s</td>
<td></td>
<td>> OV</td>
<td>257.0 V</td>
<td>0.45 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>> UV Stage 1</td>
<td>199.5 V</td>
<td>5.00 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Under Voltage Stage 1</td>
<td>195.5 V</td>
<td>2.5 s</td>
<td></td>
<td>< UV Stage 1</td>
<td>142.0 V</td>
<td>2.95 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Under Voltage Stage 2</td>
<td>138.0 V</td>
<td>2.5 s</td>
<td></td>
<td>< UV Stage 2</td>
<td>134.0 V</td>
<td>1.95 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
</tbody>
</table>

Overvoltage test - Voltage shall be stepped from 249 V to the test voltage and held for the test duration and then stepped back to 249 V.

Undervoltage test – Voltage shall be stepped from 199 V to the test voltage and held for the test duration and then stepped back to 199 V.

Additional Comments / Observations:

Over and Under Voltage Protection HV

Where the **Connection Point** is at **HV** the **Generator** shall demonstrate compliance with this EREC G99/NI in respect of Over and Under Voltage Protection by provision of **Manufacturers' Information**, type test reports or by undertaking the following tests on site.

Tests referenced to 110 V ph-ph VT output

Calibration and Accuracy Tests.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Pickup Voltage</th>
<th>Relay Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>measured value ± 2 V</td>
</tr>
<tr>
<td>Over Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 - L2</td>
<td>1.10 pu</td>
<td>0.5 s</td>
<td>119.35</td>
<td>122.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5 s</td>
</tr>
</tbody>
</table>
Over and Under Voltage Protection Tests HV

Stability Tests.

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Test Condition (3-Phase Value)</th>
<th>Test Voltage All phases ph-ph</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>----------</td>
<td>< OV</td>
<td>119 V</td>
<td>5.00 s</td>
<td>Pass / Fail</td>
<td></td>
</tr>
<tr>
<td>Over Voltage</td>
<td>121 V</td>
<td>1.0 s</td>
<td>> OV</td>
<td>122.3 V</td>
<td>1.95 s</td>
<td>Pass / Fail</td>
<td></td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>----------</td>
<td>> UV Stage 1</td>
<td>126.3 V</td>
<td>5.00 s</td>
<td>Pass / Fail</td>
<td></td>
</tr>
<tr>
<td>Under Voltage Stage 1</td>
<td>93.5 V</td>
<td>2.5 s</td>
<td>< UV Stage 1</td>
<td>90 V</td>
<td>2.95 s</td>
<td>Pass / Fail</td>
<td></td>
</tr>
<tr>
<td>Under Voltage Stage 2</td>
<td>66.0 V</td>
<td>2.5 s</td>
<td>< UV Stage 2</td>
<td>86 V</td>
<td>1.95 s</td>
<td>Pass / Fail</td>
<td></td>
</tr>
</tbody>
</table>

3. **Measured Value - Pickup Voltage**: Nominal voltages applied to the protection and slowly increase/decrease in steps no greater than 0.5% of the voltage setting. Pickup voltage within ±1.65 V of setting value.

4. **Measured Value - Relay Operating Time**: Stepping test voltage from nominal value to 2 V above/below the measured pickup voltage. Relay operating time to be no shorter than lower limit and no greater than upper limit.
Over and Under Frequency Protection.

The **Generator** shall demonstrate compliance with this EREC G99/NI in respect of Over and Under Frequency Protection by provision of **Manufacturers’ Information**, type test reports or by undertaking the following tests on site.

Calibration and Accuracy Tests.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Time Delay</th>
<th>Pickup Frequency</th>
<th>Relay Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.00 Hz</td>
<td>1.0 s</td>
<td>51.90</td>
<td>52.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test value</td>
<td>52.30 Hz</td>
<td>1.0 s</td>
</tr>
<tr>
<td></td>
<td>Measured Value</td>
<td>1.1 s</td>
<td></td>
</tr>
<tr>
<td>Under Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.00 Hz</td>
<td>0.5 s</td>
<td>47.90</td>
<td>48.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test value</td>
<td>47.70 Hz</td>
<td>0.5 s</td>
</tr>
<tr>
<td></td>
<td>Measured Value</td>
<td>0.6 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper Limit</td>
<td>Result</td>
<td></td>
</tr>
</tbody>
</table>

Stability Tests.

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Test Condition</th>
<th>Test Frequency</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td>--------------</td>
<td>------------</td>
<td>< OF</td>
<td>51.8 Hz</td>
<td>120 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Over Frequency</td>
<td>52.0 Hz</td>
<td>1.0 s</td>
<td>> OF</td>
<td>52.2 Hz</td>
<td>0.95 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>--------------</td>
<td>------------</td>
<td>> UF</td>
<td>48.2 Hz</td>
<td>30 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Under Frequency</td>
<td>48.0 Hz</td>
<td>0.5 s</td>
<td>< UF</td>
<td>47.2 Hz</td>
<td>0.45 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
</tbody>
</table>

Over frequency test - Frequency shall be stepped from 51.8 Hz to the test frequency and held for the test duration and then stepped back to 51.8 Hz.

Under frequency test - Frequency shall be stepped from 48.2 Hz to the test frequency and held for the test duration and then stepped back to 48.2 Hz.

Additional Comments / Observations:
Details of Loss of Mains Protection.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Manufacturer’s type</th>
<th>Date of Installation</th>
<th>Settings</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loss-of-Mains (LOM) Protection Tests.

The Generator shall demonstrate compliance with this EREC G99/NI in respect of LOM Protection by either providing the DNO with appropriate Manufacturers’ Information, type test reports or by undertaking the following tests on site.

Calibration and Accuracy Tests.

Ramp in range 49.5 – 50.5 Hz

<table>
<thead>
<tr>
<th>Pickup (±0.05 Hzs⁻¹)</th>
<th>Relay Operating Time RoCoF= ±0.10 Hzs⁻¹ above setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test Condition Measured Value⁵ Lower Limit Result</td>
</tr>
<tr>
<td>Setting = 1.0 Hzs⁻¹, Time delay 500 ms</td>
<td></td>
</tr>
<tr>
<td>Increasing Frequency</td>
<td>0.95 1.05 Pass/Fail 1.10 Hzs⁻¹</td>
</tr>
<tr>
<td>Reducing Frequency</td>
<td>0.95 1.05 Pass/Fail 1.10 Hzs⁻¹</td>
</tr>
</tbody>
</table>

Ramp in range 49.5 – 50.5 Hz

| Increasing Frequency | 0.95 1.05 Pass/Fail 3.00 Hzs⁻¹ | 0.5 s Pass/Fail |
| Reducing Frequency | 0.95 1.05 Pass/Fail 3.00 Hzs⁻¹ | 0.5 s Pass/Fail |

⁵ Measured Value – Pickup RoCoF: Apply test voltage with frequency of 49.5 Hz to be applied to the protection and ramp up to 50.5 Hz at a RoCoF of 0.1 Hzs⁻¹, repeating the test incrementing the RoCoF at steps of 0.05 Hzs⁻¹ until protection operates. Repeat for reducing frequency (50.5 Hz to 49.5 Hz). Pickup RoCoF value within ±0.05 Hzs⁻¹ of setting value.

⁶ Measured Value – Relay Operating Time: Test increasing / reducing frequency at a rate of 0.1 Hzs⁻¹ above setting value. Relay should not operate within 500 ms.

Stability Tests.

Ramp in range 49.5 - 50.5 Hz

<table>
<thead>
<tr>
<th>Test Condition</th>
<th>Test frequency ramp</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td>< RoCoF setting (increasing f)</td>
<td>+0.95 Hzs⁻¹</td>
<td>2.1 s</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>< RoCoF setting (reducing f)</td>
<td>-0.95 Hzs⁻¹</td>
<td>2.1 s</td>
<td>Pass/Fail</td>
</tr>
</tbody>
</table>
LoM Protection - Stability test.

<table>
<thead>
<tr>
<th></th>
<th>Start Frequency</th>
<th>Change</th>
<th>Confirm no trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Vector Shift</td>
<td>49.5 Hz</td>
<td>+50 degrees</td>
<td></td>
</tr>
<tr>
<td>Negative Vector Shift</td>
<td>50.5 Hz</td>
<td>-50 degrees</td>
<td></td>
</tr>
</tbody>
</table>

Wiring functional tests:

If required by para 15.2.1, confirm that wiring functional tests have been carried out in accordance with the instructions below

Yes/ NA

Where components of a Power Generating Module are separately Type Tested and assembled into a Power Generating Module, if the connections are made via loose wiring, rather than specifically designed error-proof connectors, then it will be necessary to prove the functionality of the components that rely on the connections that have been made by the loose wiring.

As an example, consider a Type Tested alternator complete with its control systems etc. It needs to be connected to a Type Tested Interface Protection unit. In this case there are only three voltage connections to make, and one tripping circuit. The on-site checks need to confirm that the Interface Protection sees the correct three phase voltages and that the tripping circuit is operative. It is not necessary to inject the Interface Protection etc to prove this. Simple functional checks are all that are required.

Test schedule:

With the Generating Unit running and energised, confirm L1, L2, L3 voltages on the Generating Unit and on the Interface Protection.

Disconnect one phase of the control wiring at the Generating Unit. Confirm received voltages at the Interface Protection have one phase missing.

Repeat for other phases.

Confirm that a trip on the Interface Protection trips the Generating Unit.
<table>
<thead>
<tr>
<th>Logic Interface Port:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm that an input port is provided and can be used to shut down the module</td>
</tr>
</tbody>
</table>

Insert here any additional tests which have been carried out (as identified as being required by Form A2-1, A2-2 or A2-3)
A.3 Installation Document for Type A Power Generating Modules (Form A3-1) and Integrated Micro Generation and Storage (Form A3-2)

Form A3-1 : Installation Document for Type A Power Generating Modules

Please complete and provide this document for every Power Generating Facility.

Part 1 should be completed for the Power Generating Facility.

Part 2 should be completed for each of the Power Generating Modules being commissioned. Where the installation is phased the form should be completed on a per Generating Unit basis as each part of the installation is completed in accordance with EREC G99/NI paragraph 15.3.3. For phased installations reference to PGM in this form should be read as reference to Generating Units.

Form A3-1 Part 1

To

ABC electricity distribution

DNO
99 West St, Imaginary Town, ZZ99 9AA abced@wxyz.com

Generator Details:

Generator (name)
Address
Post Code
Contact person (if different from Generator)
Telephone number
E-mail address
MPRN(s)
Generator signature

Installer Details:

Installer
Accreditation /
Qualification

<table>
<thead>
<tr>
<th>Address</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Code</td>
<td></td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Telephone Number</td>
<td></td>
</tr>
<tr>
<td>E-mail address</td>
<td></td>
</tr>
<tr>
<td>Installer signature</td>
<td></td>
</tr>
</tbody>
</table>

Installation details

<table>
<thead>
<tr>
<th>Address</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Post code</td>
<td></td>
</tr>
<tr>
<td>Location within Generator's Installation</td>
<td></td>
</tr>
<tr>
<td>Location of Lockable Isolation Switch</td>
<td></td>
</tr>
</tbody>
</table>

Summary details of Power Generating Modules

- **Generator's Installation** satisfies the requirements of BS7671 (IET Wiring Regulations).
- Suitable lockable points of isolation have been provided between the

<table>
<thead>
<tr>
<th>Manufacturer / Reference</th>
<th>Date of Installation</th>
<th>Technology Type</th>
<th>Manufacturers Ref No. (Product ID) or Reference to Form A2-1/2/3 or combination of above as applicable</th>
<th>Power Generating Module Registered Capacity in kW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-Phase Units</th>
<th>Single Phase Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH1</td>
<td>PH2</td>
</tr>
<tr>
<td>PH3</td>
<td></td>
</tr>
</tbody>
</table>

Commissioning Checks

<table>
<thead>
<tr>
<th>Description</th>
<th>Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator's Installation satisfies the requirements of BS7671 (IET Wiring Regulations).</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Suitable lockable points of isolation have been provided between the</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>PGMs and the rest of the Generator’s Installation.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Labels have been installed at all points of isolation in accordance with EREC G99/NI.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Interlocking that prevents PGMs being connected in parallel with the DNO’s Distribution Network (without synchronising) is in place and operates correctly.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Balance of Multiple Single Phase PGMs. Confirm that design of the Generator’s Installation has been carried out to limit output power imbalance to below 16 A per phase, as required by EREC G99/NI.</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

Form A3-1 Part 2

<table>
<thead>
<tr>
<th>Power Generating Module reference or name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Information to be enclosed.</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Confirmation *</td>
</tr>
<tr>
<td>Schedule of protection settings (may be included in circuit diagram)</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>As installed Standard Application Form data, unless already provided.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Final copy of circuit diagram</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

Commissioning Checks.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The Interface Protection settings have been checked and comply with EREC G99/NI.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully synchronises with the DNO’s Distribution Network without causing significant voltage disturbance.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully runs in parallel with the DNO’s Distribution Network without tripping and without causing significant voltage disturbances.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully disconnects without causing a significant voltage disturbance, when it is shut down.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Interface Protection operates and disconnects the DNO’s Distribution Network quickly (eg within 1 s) when a suitably rated switch, located between the PGM and the DNO’s incoming connection, is opened.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM remains disconnected for at least 60 s after switch is reclosed.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Loss of tripping and auxiliary supplies. Where applicable, loss of supplies to tripping and protection relays results in either PGM lockout or an alarm to a 24 hour manned control centre.</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

*Circle as appropriate. If "No" is selected the Power Generating Facility is deemed to have failed the commissioning tests and the Power Generating Module shall not be put in service.
Additional comments / observations:

Declaration – to be completed by Generator or Generator’s Appointed Technical Representative.

I declare that for the **Type A Power Generating Module** within the scope of this EREC G99/NI, and the installation:

1. Compliance with the requirements of EREC G99/NI is achieved.
2. The commissioning checks detailed in Form A2-4 have been successfully completed*.
3. The commissioning checks detailed in this Form A3-1 have been successfully completed.

*delete if not applicable ie if the **Interface Protection** and ride through capabilities are **Type Tested**.

<table>
<thead>
<tr>
<th>Name:</th>
<th>Signature:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Declaration – to be completed by DNO Witnessing Representative if applicable. Delete if not witnessed by the DNO.

I confirm that I have witnessed:

1. The commissioning checks detailed in Form A2-4 *;
2. The commissioning checks detailed in this Form A3-1 on behalf of and that the results are an accurate record of the checks.

*delete if not applicable ie if the **Interface Protection** and ride through capabilities are **Type Tested**

<table>
<thead>
<tr>
<th>Name:</th>
<th>Signature:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Form A3-2: Installation Document for Integrated Micro Generation and Storage

Please complete and provide this document for each Integrated Micro Generation and Storage installation.

Part 1 should be completed for the Integrated Micro Generation and Storage installation.

Part 2 should be completed for each of the Power Generating Modules (i.e., for the Electricity Storage Inverters and non-Electricity Storage Power Generating Module Inverters) being commissioned. Where the installation is phased, the form should be completed on a per Generating Unit basis as each part of the installation is completed in accordance with EREC G99/NI paragraph 15.3.3. For phased installations reference to PGM in this form should be read as reference to Generating Units.

Form A3-2 Part 1

To ABC electricity distribution DNO 99 West St, Imaginary Town, ZZ99 9AA abced@wxyz.com

Generator Details:

Generator (name)
Address
Post Code
Contact person (if different from Generator)
Telephone number
E-mail address
MPRN(s)
Generator signature

Installer Details:

Installer
Accreditation / Qualification
Address
<table>
<thead>
<tr>
<th>Manufacturer / Reference</th>
<th>Date of Installation</th>
<th>Technology Type</th>
<th>Manufacturers Ref No. (Product ID) or Reference to Form A2-3</th>
<th>Power Generating Module Registered Capacity in kW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-Phase Units</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Single Phase Units</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PH1</td>
</tr>
</tbody>
</table>

Emerging technology classification (if applicable):

Commissioning Checks:

<table>
<thead>
<tr>
<th>Description</th>
<th>Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator's Installation satisfies the requirements of BS7671 (IET Wiring Regulations).</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>
Suitable lockable points of isolation have been provided between the PGMs and the rest of the Generator's Installation. | Yes / No*
---|---
Labels have been installed at all points of isolation in accordance with EREC G99/NI. | Yes / No*
Interlocking that prevents PGMs being connected in parallel with the DNO's Distribution Network (without synchronising) is in place and operates correctly. | Yes / No*
Balance of Multiple Single Phase PGMs. Confirm that design of the Generator's Installation has been carried out to limit output power imbalance to below 16 A per phase, as required by EREC G99/NI. | Yes / No*
Export limitation scheme meets the requirements of EREC G100 and has been commissioned in accordance with EREC G100. | Yes / No*

Information to be enclosed:

<table>
<thead>
<tr>
<th>Description</th>
<th>Confirmation *</th>
</tr>
</thead>
<tbody>
<tr>
<td>As installed Standard Application Form data, unless already provided.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Final copy of circuit diagram</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>EREC G100 Export limitation scheme installation and commissioning test form.</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

Form A3-2 Part 2

<table>
<thead>
<tr>
<th>Power Generating Module reference or name</th>
<th></th>
</tr>
</thead>
</table>

Information to be enclosed.

| Description | Confirmation *
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule of protection settings (may be included in circuit diagram)</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

Commissioning Checks.

<table>
<thead>
<tr>
<th>The Interface Protection settings have been checked and comply with EREC G99/NI.</th>
<th>Yes / No*</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PGM successfully synchronises with the DNO's Distribution Network without causing significant voltage disturbance.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully runs in parallel with the DNO's Distribution Network without tripping and without causing significant voltage disturbances.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully disconnects without causing a significant voltage disturbance, when it is shut down.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Interface Protection operates and disconnects the DNO's Distribution</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>
Network quickly (eg within 1 s) when a suitably rated switch, located between the PGM and the DNO's incoming connection, is opened.

<table>
<thead>
<tr>
<th>The PGM remains disconnected for at least 60 s after switch is reclosed.</th>
<th>Yes / No*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of tripping and auxiliary supplies. Where applicable, loss of supplies to tripping and protection relays results in either PGM lockout or an alarm to a 24 hour manned control centre.</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

*Circle as appropriate. If “No” is selected the Power Generating Facility is deemed to have failed the commissioning tests and the Power Generating Module shall not be put in service.

Additional comments / observations:

Declaration – to be completed by Generator or Generator’s Appointed Technical Representative.

I declare that for the Power Generating Module within the scope of this EREC G99/NI, and the installation:

1. Compliance with the requirements of EREC G99/NI and EREC G100 is achieved.
2. The Power Generating Module is Fully Type Tested.
3. The commissioning checks detailed in this Form A3-2 Part 2 have been successfully completed.

Name:

Signature: Date:

Company Name:

Position:
A.4 Emerging Technologies and other Exceptions

A.4.1 Emerging Technologies

The Utility Regulator confirmed that no applications were received for Emerging Technology status in Northern Ireland, in their document "EU Electricity Network Codes - Application Process for Generator Classification as an "Emerging Technology", 01 December 2016.

A.4.2 Electricity Storage

For Electricity Storage devices the following sections of EREC G99/NI do not apply:

Type A - less than 100 kW:
- 11.2.3 (constant Active Power output); and
- 11.2.4 (Limited Frequency Sensitive Mode – Overfrequency).

Type B - 100 kW or greater but less than 5 MW:
- 12.2.4 (constant Active Power output);
- 12.2.5 (Limited Frequency Sensitive Mode – Overfrequency);

Type C and Type D - 5 MW or greater and / or with a Connection Point at greater than 110 kV:
- 13.2.3 (constant Active Power output);
- 13.2.4 (Limited Frequency Sensitive Mode – Overfrequency);
- 13.2.5 (Limited Frequency Sensitive Mode – Underfrequency);
- 13.2.6 (Frequency Sensitive Mode).

Where Electricity Storage devices are DC coupled with generation, the Electricity Storage exceptions do not apply to the Inverter.

A.4.3 Infrequent Short-Term Parallel Operation

For Power Generating Modules that operate in parallel with the Distribution Network under an infrequent short-term parallel operation mode the following sections of EREC G99/NI do not apply:

Type A - Less than 100 kW:
- All of Section 11

Type B - 100 kW or greater but less than 5 MW:
- All of Section 12
Type C and Type D - 5 MW or greater and / or with a Connection Point at greater than 110 kV:

- All of Section 13
A.5 Example calculations to determine if unequal generation across different phases is acceptable or not

A Generator Installation might have 12 kW of PV and a 3 kW CHP plant. Due to the areas of roof available the PV plant comprises 2 by 4.5 kW Inverters and a 3 kW Inverter.

(a) The following connection would be deemed acceptable:

- Ph 1 4.5 kW PV
- Ph 2 3 kW PV plus 3 kW CHP
- Ph 3 4.5 kW PV

This would lead to:

- 1.5 kW imbalance with CHP at zero output
- 1.5 kW imbalance with CHP and PV at maximum output
- 3 kW imbalance with CHP at maximum output and PV at zero output.

All of which are below the 16 A imbalance limit.

(b) The following alternative connection for the same plant would be deemed unacceptable:

- Ph1 4.5 kW PV plus 3 kW CHP
- Ph 2 3 kW PV
- Ph3 4.5 kW PV

This is not acceptable as at full output Ph1 would have 4.5 kW more output than Ph2 and this exceeds the 16 A limit described above even though on an individual technology basis the limit of 16 A is not exceeded.

If a Generator Installation has a single technology installed which has PGMs with different output patterns for example PV mounted on roofs facing different directions then they should be regarded separately

(For these cases the assumption is that in the morning the east roof would produce full output and the west roof zero output with the opposite in the afternoon. Whilst this might not be strictly true the simplification makes the calculations much simpler)

(a) The following connection would be deemed acceptable.

- Ph 1 6 kW east roof 6 kW west roof
- Ph 2 6 kW east roof 6 kW west roof
(b) The following alternative connection for the same plant would be deemed unacceptable.

- Ph1 12 kW east roof
- Ph2 5 kW east roof
- Ph3 12 kW west roof

This is not acceptable as Ph1 would produce more than Ph3 in the morning and in the afternoon Ph3 would produce more than Ph1 in each case by a margin greater than 16 A.
A.6 Not used
A.7 Requirements for Type Testing Power Generating Modules

This Annex describes methodologies for undertaking compliance verification for **Type A Power Generating Modules**. The Annex describes approaches which were originally intended for small **Power Park Modules**. Manufacturers are free to adapt techniques described in Annex B where this is more economic or efficient, provided the **Type A** performance requirements are fully demonstrated. The Forms provided in Annex A.2 should be used as a basis for demonstration of compliance.

Annex A.7.1 **Power Park Module Requirements.**

Annex A.7.2 **Synchronous Power Generating Module Requirements.**

Annex A.7.3 **Additional Technology Requirements.**

- A.7.3.1. Domestic CHP
- A.7.3.2. Photo-voltaic
- A.7.3.3. Fuel Cells
- A.7.3.4. Hydro
- A.7.3.5. Wind
- A.7.3.6. **Electricity Storage** devices

Annex A.7.1 relates to any **Generating Unit** that uses an **Inverter** (or Converter) as its means of connecting to the **Distribution Network**.

Annex A.7.2 relates to any **Synchronous Power Generating Module** that during normal running operation is connected directly to the **Distribution Network** and has a **Rated Capacity** < 50 kW, although Manufacturers may choose to use these requirements for larger **Type A Synchronous Power Generating Modules**.

For type testing any **Generating Unit** select either Annex A.7.1 or Annex A.7.2 as is most appropriate to the **Generating Unit** under test. Annex A.7.2 should also be used for asynchronous **Generating Units** that are not connected to the **Distribution Network** via an **Inverter** (ie induction **Generating Units**).

The **Generating Unit** may also require additional technology type tests as identified in Annex A.7.3.

Examples

A Wind Turbine system using an **Inverter** (or **Inverters**) for connection is required to use Annex A.7.1 – “**Common Power Park Module Requirements**” and Annex A.7.3.5 – “**Wind**” Additional Technology Requirements.

A Hydro system using an induction generator connected directly to the **Distribution Network** is suggested to use Annex A.7.2 – “**Synchronous**” and Annex A.7.3.4– “**Hydro**” Additional Technology Requirements.
A.7.1 Power Park Module Requirements

A7.1.1 Certification & Type Testing Generating Unit Requirements

A.7.1 can apply to Power Park Modules or to individual Inverters and/or Generating Units if the functionality is included in each unit of a Power Park Module. Within this Section A.7.1 the term Power Park Module will be used but its meaning can be interpreted within A.7.1 to mean Power Park Module, Generating Unit or Inverter as appropriate.

A.7.1 describes a methodology for obtaining type certification or type verification for a Power Park Module containing an Inverter. Typically, all interface functions are contained within the Inverter and in such cases it is only necessary to have the Inverter Type Tested. Alternatively, a package of specific separate parts of equivalent function may also be Type Tested.

The Interface Protection shall satisfy the requirements of all of the following standards. Where these standards have more than one part, the requirements of all such parts shall be satisfied, so far as they are applicable.

BS EN 61000 (Electromagnetic Standards)
BS EN 60255 (Electrical Relays)
BS EN 61810 (Electrical Elementary Relays)
BS EN 60947 (Low Voltage Switchgear and Control gear)
BS EN 61869 (Instrument Transformers: Additional requirements for current transformers).

Currently there are no harmonised functional standards that apply to the Power Park Module’s Interface Protection. Consequently, in cases where power electronics is used for energy conversion along with any separate Interface Protection unit they will need to be brought together and tested as a complete Power Park Module as described in this EREC G99/NI, and recorded in format similar to that shown in Annex A.2 (Form A2-3).

Where the Interface Protection is physically integrated within the overall Power Park Module control system, the functionality of the Interface Protection unit should not be compromised by any failure of other elements of the control system (fail safe). For a Full Type Tested Power Park Module the completed Power Park Module’s Interface Protection shall not rely on interconnection using cables which could be terminated incorrectly on site ie the interconnections shall be made by non-reversible plug and socket which the Manufacturer has made and tested prior to delivery to site.

Where Type Tested components are wired together on site, ie not using specifically designed plugs and sockets for the purpose, it will be necessary to prove that all wiring has been correctly terminated by proving the functions which rely on the wiring at the time of commissioning as detailed in paragraph 15.2 and Form A2-4, Annex A.2.

This Annex is primarily designed for the testing of three phase Power Park Modules. However, where practicable, a single phase, or split phase test may be carried out if it can be shown that it will produce the equivalent results.
This Annex applies to Power Park Modules either with or without load management or without Electricity Storage devices connected on the prime mover side of the Power Park Module.

A7.1.2 Type Verification Functional Testing of the Interface Protection

Type Testing is the responsibility of the Manufacturer. This test will verify that the operation of the Power Park Module Interface Protection shall result:

a) in the safe disconnection of the Power Park Module from the DNO’s Distribution Network in the event that system parameters exceed the protection settings specified in Table 10.1; and

b) in the Power Park Module remaining connected to the DNO’s Distribution Network while Distribution Network conditions are:
 1. within the envelope specified by the settings plus and minus the tolerances specified for equipment operation in Table 10.1; and
 2. within the trip delay settings specified in Table 10.1.

Wherever possible the type testing of a Power Park Module designed for a particular type of prime mover should be proved under normal conditions of operation for that technology (unless otherwise noted).

A7.1.2.1 Disconnection times

The minimum trip time delay settings, for over / under voltage, over / under frequency and loss of mains tests below, are presented in Table 10.1.

For over / under voltage, over / under frequency and loss of mains tests, reconnection shall be checked as detailed below.

A7.1.2.2 Over / Under Voltage

The Power Park Module shall be tested by operating in parallel with a variable AC test supply, see Figure A.7.1. Correct protection and ride-through operation shall be confirmed during operation of the Power Park Module. The set points for over and under voltage at which the Power Park Module disconnects from the supply will be established by varying the AC supply voltage.

To establish the trip voltage, the test voltage should be applied in steps of ± 0.5% or less, of the voltage setting for a duration that is longer than the trip time delay, for example 1 s in the case of a delay setting of 0.5 s starting at least 4 V below or above the setting. The test voltage at which this trip occurred is to be recorded. Additional tests just above and below the trip voltage should be undertaken to show that the test is repeatable and the figure at which a repeatable trip occurs should be recorded on the type verification test report Annex A.2-3.

To establish the trip time, the test voltage should be applied starting from 4 V below or above the recorded trip voltage and should be changed to 4 V above or below the recorded trip voltage in a single step. The time taken from the step change to the Inverter tripping is to be recorded on the type verification test report Annex A.2-3.

To establish correct ride-through operation, the test voltage should be applied at each setting ± 4 V and for the relevant times shown in the Table in Annex A.2-3.
For example to test undervoltage setting stage 1 which is required to be set at nominally 195.5 V the circuit can be set up as shown below and the voltage adjusted to 199.5 V. In integrated designs where there is no separate way of establishing that the Power Park Module is disconnected, the Power Park Module should be powered up to export a measurable amount of energy so that it can be confirmed that the Power Park Module has ceased to output energy. The variable voltage supply is then decreased in steps of no more than 0.5% of nominal (1.15 V) maintaining the voltage for at least 3.5 s (trip time plus 0.5 s) at each voltage level. At each voltage level confirmation that the Power Park Module has not tripped after the time delay is required to be taken. At the voltage level at which a trip occurs then this should be recorded as the provisional trip voltage. Additional tests just above and if necessary just below the provisional trip voltage will allow the actual trip voltage to be established on a repeatable basis. This value should be recorded. For the sake of this example the actual trip level is assumed to have been established as being 195.5 V. The variable voltage supply should be set to 199.5 V, the Power Park Module set to produce a measurable output (if necessary) and then the voltage decreased to 191.5 V in a single step. The time from the step change to the disconnection of the Power Park Module should be recorded as the trip time.

The Power Park Module then needs to operate at 4 V above the nominal undervoltage stage 1 setting which is 199.5 V for a period of at least 5 s without tripping and while producing a measurable output. This can be confirmed as a no trip in the relevant part of Annex A2-3. The voltage then needs to be stepped down to the next level of 142.0 V for a period of 2.5 s and then back to 199.5 V during which time the output of the relay should continue with no interruption though it may change due to the change in voltage, this can be recorded as a no trip for the second value. The step down and step up test needs to be done a second time with a min value of 134 V and with a time of 1.98 s.

Note that this philosophy should be applied to the over voltage, over and under frequency, RoCoF and Vector shift stability tests which follow.

Note:

(1) The frequency required to trip is the setting ± 0.1 Hz

(2) Measurement of operating time should be measured at a value of 0.3 Hz (suggestion – 2 x tolerance) above/below the setting to give “positive” operation

(3) The “No trip tests” need to be carried out at the relevant values and times as shown in the table in Annex A.2-3 to ensure that the protection will not trip in error.

Figure A.7.1. Power Park Module test set up – over / under voltage
A.7.1.2.3 Over / Under Frequency

The **Power Park Module** shall be tested by operating in parallel with a low impedance, variable frequency test supply system, see Figure A.7.2. Correct protection and ride-through operation should be confirmed during operation of the **Power Park Module**. The set points for over and under frequency at which the **Power Park Module** system disconnects from the supply will be established by varying the test supply frequency.

To establish a trip frequency, the test frequency should be applied in a slow ramp rate of less than 0.1 Hzs\(^{-1}\), or if this is not possible in steps of 0.05 Hz for a duration that is longer than the trip time delay, for example 1 s in the case of a delay setting of 0.5 s. The test frequency at which this trip occurred is to be recorded. Additional tests just above and below the trip frequency should be undertaken to show that the test is repeatable and the figure at which a repeatable trip occurs should be recorded on the type verification test report Annex A.2-3.

To establish the trip time, the test frequency should be applied starting from 0.3 Hz below or above the recorded trip frequency and should be changed to 0.3 Hz above or below the recorded trip frequency in a single step. The time taken from the step change to the **Power Park Module** tripping is to be recorded on the type verification test report Annex A.2-3. It should be noted that with some loss of mains detection techniques this test may result in a faster trip due to operation of the loss of mains protection. There are two ways around this. Firstly the loss of mains protection may be able to be turned off in order to carry out this test. Secondly by establishing an accurate frequency for the trip a much smaller step change could be used to initiate the trip and establish a trip time. This may require the test to be repeated several times to establish that the time delay is correct.

To establish correct ride-through operation, the test frequency should be applied at each setting ± 0.2 Hz and for the relevant times shown in the table in Annex A.2-3.

Figure A.7.2 Power Park Module test set up – over / under frequency

A.7.1.2.4 Loss of Mains Protection

The tests should be carried out in accordance with BS EN 62116 and a subset of results should be recorded as indicated in the Protection – loss of mains test section of Annex A.2-3 Type Test Verification Report.

Multi phase **Power Park Modules** should be operated at part load while connected to a network running at about 50 Hz and one phase only shall be disconnected with no disturbance to the other phases. The **Power Park Module**
should trip within 0.5 s. The test needs to be repeated with each phase disconnected in turn while the other two phases remain in operation and the results recorded in the Type Test declaration.

A.7.1.2.5 Re-connection

Further tests will be carried out with the three test circuits above to check the Power Park Module time out feature prior to automatic network reconnection. This test will confirm that once the AC supply voltage and frequency have returned to be within the stage 1 settings specified in Table 1 following an automatic protection trip operation there is a minimum time delay of 60 s before the Power Park Module output is restored (ie before the Power Park Module automatically reconnects to the Distribution Network).

A.7.1.2.6 Frequency Drift and Step Change Stability test.

The tests will be carried out using the same circuit as specified in A.7.1.2.3 above and following confirmation that the Power Park Module has passed the under and over frequency trip tests and the under and over frequency stability tests.

Four tests are required to be carried out with all protection functions enabled including loss of mains. For each stability test the Power Park Module should not trip during the test.

For the step change test the Power Park Module should be operated with a measurable output at the start frequency and then a vector shift should be applied by extending or reducing the time of a single cycle with subsequent cycles returning to the start frequency. The start frequency should then be maintained for a period of at least 10 s to complete the test. The Power Park Module should not trip during this test.

For frequency drift tests the Power Park Module should be operated with a measurable output at the start frequency and then the frequency changed in a ramp function at 0.95 Hz s\(^{-1}\) to the end frequency. On reaching the end frequency it should be maintained for a period of at least 10 s. The Power Park Module should not trip during this test.

The results shall be recorded on the test sheet of Annex A.2-3.

A.7.1.3 Limited Frequency Sensitive Mode – Over (LFSM-O)

There are two possible approaches to demonstrating LFSM-O. The first to use the test set up of Figure A.7.2. The second approach can be used where it is possible to inject a frequency control signal into the Power Generating Module. The Manufacturer or Generator can choose which is the more appropriate test for the Power Generating Module.

The test below uses the test set up of Figure A.7.2 to demonstrate LFSM-O using a variable frequency supply. The alternative approach is covered in A.7.2.4.

The test should be carried out above 80% Registered Capacity and repeated at 40-60% Registered Capacity using the specific threshold frequency of 50.2 Hz and Droop of 4%.

The Power Park Module should be tested at the following frequencies:

Step a) 50.00 Hz ±0.01 Hz
Step b) 50.25 Hz ±0.05 Hz
Step c) 50.70 Hz ±0.10 Hz
Step d) 51.15 Hz ±0.05 Hz
Step e) 50.70 Hz ±0.10 Hz
Step f) 50.25 Hz ±0.05 Hz
Step g) 50.00 Hz ±0.01 Hz

The frequency at each step should be maintained for at least one minute and the **Active Power** reduction in the form of a gradient determined and assessed for compliance with paragraph 11.2.3.

A.7.1.4 Power Quality

A.7.1.4.1 Harmonics

The tests should be carried out as specified in BS EN 61000-3-12 and can be undertaken with a fixed source of energy at two power levels firstly between 45 and 55% and at 100% of **Registered Capacity**.

A.7.1.4.2 Power Factor

The test set up shall be such that the **Power Park Module** supplies full load to the **DNO's Distribution Network** via the **Power Factor** (pf) meter and the variac as shown below in Figure A.7.3. The **Power Park Module Power Factor** should be within the limits given in paragraph 11.1.5, for three test voltages 0.94 pu, 1 pu V22 and 1.1 pu V.

![Power Park Module test set up – Power Factor](image)

NOTE 1
points of isolation are not shown.

NOTE 2: It is permissible to use a voltage regulator or tapped transformer to perform this test rather than a variac as shown.

A.7.1.4.3 Voltage Flicker

The voltage fluctuations and flicker emissions from the **Power Park Module** shall be measured in accordance with BS EN 61000-3-11 and the technology

22 For a LV connected Power Generating Module 1 pu V = 230 V
specific Annex A.7.3. The required maximum supply impedance should be calculated and recorded in the relevant part of Compliance Verification Report Annex A.2 (Form A2-3).

A.7.1.4.4 DC Injection

The level of DC injection from the Power Park Module-connected prime mover in to the DNO’s Distribution Network shall not exceed the levels specified in 9.4.6 when measured during operation at three levels, 10%, 55% and 100% of rating with a tolerance of ±5%.

The DC injection requirements can be satisfied by the installation of an isolation transformer on the AC side of an Inverter-connected Power Park Module. A declaration that an isolating transformer is fitted can be made in lieu of the tests noted above.

A.7.1.5 Short Circuit Current Contribution

Power Park Module connected Power Generating Module’s generally have small short circuit fault contributions, however, the DNO needs to understand the contribution that they make to system fault levels in order to determine that they can continue to safely operate without exceeding design fault levels for switchgear and other circuit components.

The following type tests shall be carried out and the results noted in Annex A.2-3.

![Figure A.7.4 Power Park Module short circuit test circuit](image)

Test procedure

In Figure A.7.4 ‘A’ and ‘V’ are ammeters and voltmeters used to record the test data required. Component ‘D’ is a resistive load plus resonant circuit as required for the loss of mains test as specified in BS EN 62116 set up to absorb 100% Registered Capacity of the Power Park Module. Component ‘a’ is an ammeter used to confirm that all the output from the Inverter is being absorbed by component D. Components ‘B’ and ‘C’ are set up to provide a voltage of between 10% and 40% of nominal when component ‘C’ carries the Registered Capacity of the Power Park Module in Amps.
Component ‘C’ should be short term rated to carry the load which would appear through it should it be energised at 253 V for at least 1 s. Component ‘B’ is to have an impedance of between 10 and 20 Ω per phase. If components ‘B’ and ‘C’ are short time rated then an additional switch in series with ‘B’ and ‘C’ can be inserted and arranged to be closed shortly before the main change over switch shown on the drawing and opened at the end of the test period. Components ‘B’ and ‘C’ are to have an X to R ratio of 2.5 to 1.

The test is carried out by setting up the Power Park Module and load ‘D’ to produce and then absorb the Registered Capacity of the Inverter. When zero export is shown by ammeter ‘a’ then the changeover switch shown is operated connecting the Inverter to the reduced voltage connection created by components ‘B’ and ‘C’ and disconnecting it from the normal connection. The make contact is an early make and the break contact a late break so that the Power Park Module is not disconnected from a mains connection for any significant time.

The values of voltage and current should be recorded for a period of up to 1 s when the changeover switch should be returned to the normal position. The voltage and current at relevant times shall be recorded in the type test report (Annex A.2-3) including the time taken for the Power Park Module to trip. (It is expected that the Power Park Module will trip on either loss of mains or under voltage in less than 1 s).

A7.1.6 Self-Monitoring - Solid State Disconnection

Some Power Park Modules include solid state switching devices to disconnect from the DNO’s Distribution Network. In this case paragraph 9.7.9 requires the control equipment to monitor the output stage of the Power Park Module to ensure that in the event of a protection initiated trip the output voltage is either disconnected completely or reduced to a value below 50 V AC. This shall be verified either by self-certification by the Manufacturer, or additional material shall be presented to the tester sufficient to allow an assessment to be made.

A.7.2 Synchronous Power Generating Module Requirements (up to and including 50 kW)

A7.2.1 Certification & Type Testing Generating Unit Requirements

This Annex describes a methodology for obtaining type certification or type verification for a Synchronous Power Generating Module in conjunction with Form A2-1. Other compliance requirements are detailed in Form A2-2 which may be used as an alternative to this Annex.

The Interface Protection of the Synchronous Power Generating Module shall satisfy the requirements of all of the following standards. Where these standards have more than one part, the requirements of all such parts shall be satisfied, so far as they are applicable.

- BS EN 61000 (Electromagnetic Standards)
- BS EN 60255 (Electrical Relays)
- BS EN 61810 (Electrical Elementary Relays)
Currently there are no harmonised functional standards that apply to the **Power Generating Module Interface Protection**, therefore in order to achieve **Type Tested** status the **Controller** and any separate **Interface Protection** unit will require their functionality to be **Type Tested** as described in this Annex, and recorded in format similar to that shown in Annex A.2.1.

Where the **Interface Protection** is physically integrated within the overall **Power Generating Module** control system, the functionality of the **Interface Protection** unit should not be compromised by any failure of other elements of the control system (fail safe). For a **Fully Type Tested Power Generating Module** the completed **Power Generating Module**‘s **Interface Protection** shall not rely on interconnection using cables which could be terminated incorrectly on site ie the interconnections shall be made by non-reversible plug and socket which the **Manufacturer** has made and tested prior to delivery to site.

Where **Type Tested** components are wired together on site, ie not using specifically designed plugs and sockets for the purpose, it will be necessary to prove that all wiring has been correctly terminated by proving the functions which rely on the wiring at the time of commissioning as detailed in paragraph 15.2 and Form A2-4, Annex A.2.

Wherever possible the type testing of a **Power Generating Module** utilising a particular type of prime mover should be proved under normal conditions of operation for that prime mover (unless otherwise noted).

This Annex can also be used for asynchronous **Generating Units** that are not connected to the **Distribution Network** via an **Inverter** as appropriate.

This Annex also applies to any **Synchronous Power Generating Modules** that are powered by stored energy (eg compressed air), but the requirement to demonstrate the **LFSM-O** will not be required.

A.7.2.2 Type Verification Testing of the Interface Protection Functions

Type verification testing is the responsibility of the **Manufacturer**. This test will verify that the operation of the **Power Generating Module Interface Protection** shall result:

a) in the safe disconnection of the **Power Generating Module** from the **DNO’s Distribution Network** in the event that the protection settings specified in Table 10.1 are exceeded; and

b) in the **Power Generating Module** remaining connected to the **DNO’s Distribution Network** while network conditions are:

 1. within the envelope specified by the settings plus and minus the tolerances specified for equipment operation in Table 10.1; and

 2. within the trip delay settings specified in Table 10.1.
The **Interface Protection** may be incorporated into the **Controller** in which case it should be tested as part of the **Controller**. Alternatively, the constituent devices that form the **Interface Protection** may be discrete in which case the tests may be carried out on the discrete protection devices independently from the **Controller**.

In either case it will be necessary to verify that a protection operation will disconnect the **Power Generating Module** from the **DNO's Distribution Network**.

A7.2.2.1 Disconnection times

The minimum trip time delay settings, for over / under voltage, over / under frequency and loss of mains tests below, are presented in Table 10.1.

For over / under voltage, over / under frequency and loss of mains tests, reconnection shall be checked as detailed below.

In some systems it may be safer and more convenient to test the trip delay time and the disconnection time separately. This will allow the trip delay time to be measured in a test environment (in a similar way as for a protection relay). The disconnection time can be measured in the **Power Generating Module**'s normal operation, allowing accurate measurement with correct inertia and prime mover characteristics. This is permitted providing the total disconnection time does not exceed the value specified in Section 10.6.7.1. When measuring the disconnection time where the **Interface Protection** is included in the **Controller**, 5 s disconnections should be initiated, and the average time recorded.

A7.2.2.2 Over / Under Voltage

The **Interface Protection** shall be tested by operating the **Controller** in parallel with a variable AC test supply, as an example see Figure A.7.5. Correct protection and ride-through operation shall be confirmed. The set points for over and under voltage at which the **Interface Protection** disconnects from the supply, will be established by varying the AC supply voltage. The disconnect sequence should be initiated when the network conditions mean the protection should trip in accordance with the settings in Table 10.1, otherwise normal operation should continue.

To establish the certified trip voltage, the test voltage should be applied in steps of ± 0.5% or less of the voltage setting for a duration that is longer than the trip time delay, for example 1 s in the case of a delay setting of 0.5 s starting at least 4 V below or above the setting. Additional tests just above and below the trip voltage should be undertaken to show that the test is repeatable and the figure at which a repeatable trip occurs should be recorded on the type verification test report Annex A.2-1.

To establish the certified trip time, the test voltage should be applied starting from 4 V below or above the certified trip voltage and should be changed to 4 V above or below the certified trip voltage in a single step. The time taken from the step change to the **Power Generating Module** tripping is to be recorded on the type verification test report Annex A.2-1.

To establish correct ride-through operation, the test voltage should be applied at each setting ± 4 V and for the relevant times shown in the Table in Annex A.2-1.

For example, to test undervoltage setting which is required to be set at nominally
195.5 V the circuit can be set up as shown below and the voltage adjusted to 195.5 V. In integrated designs where there is no separate way of establishing that the Power Generating Module is disconnected, the Power Generating Module should be powered up to export a measurable amount of energy so that it can be confirmed that the Power Generating Module has ceased to output energy. The variable voltage supply is then decreased in steps of no more than 0.5% of nominal voltage (1.15 V) maintaining the voltage for at least 3.5 s (trip time plus 0.5 s) at each voltage level. At each voltage level confirmation that the Power Generating Module has not tripped after the time delay is required to be taken. At the voltage level at which a trip occurs then this should be recorded as the provisional trip voltage. Additional tests just below and if necessary just above the provisional trip voltage will allow the actual trip voltage to be established on a repeatable basis. This value should be recorded. For the sake of this example the actual trip level is assumed to have been established as being 195.5 V. The variable voltage supply should be set to 199.5 V the Power Generating Module set to produce a measurable output (if necessary) and then the voltage raised to 191.5 V in a single step. The time from the step change to the disconnection of the Power Generating Module, the output of the Power Generating Module falling to zero should be recorded as the trip time.

To confirm that the protection does not trip before the required time, the test voltage should be applied at each setting ± 4V and for the relevant times shown in the table in Annex A.2-1.

Test results should be recorded on the Test Sheet shown in Annex A.2-1.

![Diagram of Power Generating Module test set up](image)

Figure A.7.5.- Power Generating Module test set up – over / under voltage

A.7.2.2.3 Over / Under Frequency

The Interface Protection shall be tested by operating the Controller in parallel with a low impedance, variable frequency test supply system, as an example, see Figure A.7.6. Correct protection and ride-through operation should be confirmed during the test. The set points for over and under frequency at which the Interface Protection disconnects from the supply will be established by varying the test supply frequency.

To establish a trip frequency, the test frequency should be applied in a slow ramp
rate of less than 0.1 Hz, or if this is not possible in steps of 0.05 Hz for a duration that is longer than the trip time delay, for example 1 s in the case of a delay setting of 0.5 s. The test frequency at which this trip occurred is to be recorded. Additional tests just above and below the trip frequency should be undertaken to show that the test is repeatable and the figure at which a repeatable trip occurs should be recorded on the type verification test report Annex A.2.1.

To establish the trip time, the test frequency should be applied starting from 0.3 Hz below or above the recorded trip frequency and should be changed to 0.3 Hz above or below the recorded trip frequency in a single step. The time taken from the step change to the **Power Generating Module** tripping is to be recorded on the type verification test report Annex A.2.1. It should be noted that with some loss of mains detection techniques this test may result in a faster trip due to operation of the loss of mains protection and if possible the loss of mains protection should be turned off in order to carry out this test. Otherwise a much smaller step change should be used to initiate the trip and establish a trip time which may require the test to be repeated several times to establish that the time delay is correct.

To confirm that the protection does not trip before the required time the test frequency should be applied at each setting ± 0.2 Hz and for the relevant times shown in the table in Annex A.2.1.

Figure A.7.6.

Power Generating Module test set up – over / under frequency

A.7.2.2.4 Loss of Mains Protection

The resonant test circuit specified as an option for this test has been designed to model the interaction of the **Power Generating Module** under test with the local load including multiple **Power Generating Module**’s in parallel.

The **Power Generating Module** output shall be connected to a network combining a resonant circuit with a Q factor of >0.5 and a variable load. The value of the load is to match the **Power Generating Module** output. To facilitate the test for LoM there shall be a switch placed between the test load/ **Power Generating Module** combination and the DNO’s Distribution Network, as shown in Figure A.7.7.
The Power Generating Module is to be tested at three levels of the Power Generating Module’s Registered Capacity: 10%, 55% and 100% and the results recorded on the test sheet of Annex A.2-1.

For each test the load match is to be within ±5%. Each test is to be repeated five times.

Load match conditions are defined as being when the current from the Power Generating Module meets the requirements of the test load ie there is no export or import of supply frequency current to or from the DNO’s Distribution Network.

The tests will record the Power Generating Module’s output voltage and frequency from at least 2 cycles before the switch is opened until the protection system operates and disconnects itself from the DNO’s Distribution Network, or for 5 s whichever is the lower duration.

The time from the switch opening until the protection disconnection occurs is to be measured and shall comply with the requirements in Table 10.1.

Multi phase Power Generating Modules should be operated at part load while connected to a network running at about 50 Hz and one phase only shall be disconnected with no disturbance to the other phases. The Power Generating Module should trip within 0.5 s. The test needs to be repeated with each phase disconnected in turn while the other two phases remain in operation and the results recorded in the Type Test declaration.
A.7.2.5 Re-connection

Further tests will be carried out with the three test circuits above to check the **Power Generating Module** time-out feature prior to automatic network reconnection. This test will confirm that once the AC supply voltage and frequency have returned to within the stage 1 settings specified in Table 10.1 following an automatic protection trip operation there is a minimum time delay of 60 s before reconnection will be allowed.

A.7.2.6 Frequency drift and vector shift stability test.

The tests will be carried out using the same circuit as specified in A.7.2.2.3 above and following confirmation that the **Power Generating Module** has passed the under and over frequency trip and no trip tests.

Four tests are required to be carried out with all protection functions enabled including loss of mains. For each stability test the **Power Generating Module** should not trip during the test.

For the step change test the **Power Generating Module** should be operated with a measurable output at the start frequency and then a vector shift should be applied by extending or reducing the time of a single cycle with subsequent cycles returning to the start frequency. The start frequency should then be maintained for a period of at least 10 s to complete the test. The **Power Generating Module** should not trip during this test.

For frequency drift tests the **Power Generating Module** should be operated with a measurable output at the start frequency and then the frequency changed in a ramp function at 0.95 Hz/s to the end frequency. On reaching the end frequency it should be maintained for a period of at least 10 s. The **Power Generating Module** should not trip during this test.

The results shall be recorded on the test sheet of Annex A.2-1.

A.7.2.3 Power Output with Falling Frequency

The **Generator** will propose and agree a test procedure with the **DNO**, which will demonstrate how the **Synchronous Power Generating Module** **Active Power** output responds to changes in system frequency under steady state conditions.

The tests can be undertaken by the **Synchronous Power Generating Module** powering a suitable load bank, or alternatively using the test set up of Figure A.7.6. In both cases a suitable test could be to start the test at nominal frequency with the **Synchronous Power Generating Module** operating at 100% of its **Registered Capacity**.

The frequency should then be set to 49.5 Hz for 5 minutes. The output should remain at 100% of **Registered Capacity**.

The frequency should then be set to 49.0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The **Active Power** output shall not be below 99% of **Registered Capacity**.

The frequency should then be set to 48.0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The **Active Power** output shall not be below 97% of **Registered Capacity**.
The frequency should then be set to 47.6 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output shall not be below 96.2% of Registered Capacity.

The frequency should then be set to 47.1 Hz and held at this frequency for 20 s. The Active Power output shall not be below 95.0% of Registered Capacity and the Synchronous Power Generating Module shall not trip in less than the 20s of the test.

The Generator shall inform the DNO if any load limiter control is additionally employed.

A.7.2.4 Limited Frequency Sensitive Mode – Over (LFSM-O)

Note that this test is also an alternative to the test in A.7.1.3.

The two frequency response tests in Limited Frequency Sensitive Mode (LFSM) to demonstrate LFSM-O capability to a frequency injection as shown by Figure A.7.8 and Figure A.7.9 are to be conducted at Registered Capacity (although a lower power output may be agreed with the DNO if site conditions preclude attaining Registered Capacity, such as an absence of adequate wind).

There should be sufficient time allowed between tests for control systems to reach steady state. The injection signal should be maintained until the Active Power (MW) output of the Power Generating Module has stabilised. The DNO may require repeat tests should the tests give unexpected results.

The frequency input and the expected Active Power response are illustrated for different periods from 0 s to 130 s in Figure A.7.8 for a step change in frequency and in Figures A.7.9 for a ramp change in frequency. This should be in accordance with Section 11.2.5 (a threshold frequency of 50.2 Hz and a Droop of 4%) and undamped oscillations should not occur after the step or ramp frequency change. Note for diagram purposes only a short interval is shown between the frequency increase and decrease for each test. In practice the return step or ramp can start any time after the output has stabilized after the first step or ramp.

The response should commence within 2 s and shall be to the left of the red line (ie between the green line and the red line) and be as close to the green line as possible when following the frequency step or ramp. Note that the red line represents the 0.5% s\(^{-1}\) specified in 11.2.5.1.
Figure A.7.8(i): LFSM-O step response test – frequency injection

Figure A.7.8(ii): LFSM-O step response test – target response and limits
Figure A.7.8(iii): LFSM-O step response test – expansion of the allowed 2 s response delay (frequency increase)

* This frequency step \(\Delta f \) will generally be +2.0 Hz unless an injection of this size causes a reduction in plant output that takes the operating point below Minimum Stable Operating Level in which case an appropriate injection should be calculated in accordance with the following:

For example 0.6 Hz is needed to take an initial output of 100\% to a final output of 70\%. If the initial output is not 100\% and the Minimum Stable Operating Level is not 70\% then the injected step should be adjusted accordingly as shown in the example given below:

<table>
<thead>
<tr>
<th>Initial output</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Stable</td>
<td>70%</td>
</tr>
<tr>
<td>Operating Level</td>
<td></td>
</tr>
<tr>
<td>Frequency controller</td>
<td>4%</td>
</tr>
<tr>
<td>Droop</td>
<td></td>
</tr>
<tr>
<td>Frequency to be</td>
<td></td>
</tr>
<tr>
<td>injected</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{Frequency to be injected} = (1.00 - 0.70) \times 0.04 \times 50 = 0.6 \text{Hz}
\]
Figure A.7.9(i): LFSM-O ramp response test – frequency injection

Figure A.7.9(ii): LFSM-O – target response and limits
A.7.2.5 Power Quality

A.7.2.5.1 Harmonics

The tests should be carried out as specified in BS EN 61000-3-12 and can be undertaken with a fixed source of energy at two power levels firstly between 45 and 55% and at 100% of Registered Capacity.

A.7.2.5.2 Power Factor

The test set up shall be such that the Power Generating Module supplies full load to the DNO’s Distribution Network via the Power Factor (pf) meter and the variac as shown below in Figure A.7.10. The Power Generating Module pf
should be within the limits given in paragraph 11.1.5, for three test voltages 230 V –6%, 230 V and 230 V +10%.

NOTE 1. For reasons of clarity the points of isolation are not shown

NOTE 2: It is permissible to use a voltage regulator or tapped transformer to perform this test rather than a variac as shown

![Power Generating Module diagram]

Figure A.7.10
Power Generating Module test set up – Power Factor

A.7.2.5.3 Voltage Flicker

The voltage fluctuations and flicker emissions from the **Generating Unit** shall be measured in accordance with BS EN 61000-3-11 and technology specific annex. The required maximum supply impedance should be calculated and recorded in the **Type Test** declaration Annex A.2.1.

A.7.3 Additional Power Generating Module Technology Requirements

A.7.3.1 Domestic CHP

For Domestic CHP **Power Park Modules** the type verification testing and **Interface Protection** requirements will be as per the requirements defined in Annex A.7.1.

For Domestic CHP **Synchronous Power Generating Modules** the type verification testing and **Interface Protection** requirements will be as per the requirements defined in Annex A.7.2.

A.7.3.2 Photovoltaic

As all current Photovoltaic **Power Park Modules** will connect to the **DNO’s Distribution Network** via an **Inverter**, the type verification testing and **Interface Protection** requirements will be as per the requirements defined in Annex A.7.1.

A.7.3.3 Fuel Cells

As all current Fuel Cell **Power Generating Modules** will connect to the **DNO’s Distribution Network** via an **Inverter**, the type verification testing and **Interface Protection** requirements will be as per the requirements defined in Annex A.7.1.
Protection requirements will be as per the requirements defined in Annex A.7.1.

A.7.3.4 Hydro

Hydro can be connected to the DNO’s Distribution Network directly using induction or Synchronous Power Generating Modules or it can be connected by an Inverter.

The common requirements for the generator technologies will apply to micro hydro in addition the following needs to be taken into consideration.

Power Generating Modules with manually fixed output or where the output is fixed by controlling the water flow through the turbine to a steady rate, need to comply with the maximum voltage change requirements of BS EN 61000-3-2 but do not need to be tested for \(P_{st} \) or \(P_{lt} \).

Power Park Modules where the output is controlled by varying the load on the generator using the Inverter and which therefore produces variable output need to comply with the maximum voltage change requirements of BS EN 61000-3-2 and also need to be tested for \(P_{st} \) and \(P_{lt} \) over a period where the range of flows varies over the design range of the turbine with a period of at least 2 hours at each step with there being 10 steps from min flow to maximum flow. \(P_{st} \) and \(P_{lt} \) values to recorded and normalised as per the method laid down in Annex A.3.

A.7.3.5 Wind

Wind turbines can be connected to the DNO’s Distribution Network directly, typically using asynchronous induction generators, or using Inverters.

For those connected via Inverters, the type verification testing and Interface Protection requirements shall be as specified in Annex A.7.1.

For those connected directly to the DNO’s Distribution Network, the type verification testing and Interface Protection requirements shall be as specified in Annex A.7.2.

For wind turbines, flicker testing should be carried out during the performance tests specified in BS EN 61400-12. Flicker data should be recorded from wind speeds of 1 \(\text{ms}^{-1} \) below cut-in to 1.5 times 85% of the rated power. The wind speed range should be divided into contiguous bins of 1\(\text{ms}^{-1} \) centred on multiples of 1\(\text{ms}^{-1} \). The dataset shall be considered complete when each bin includes a minimum of 10 minutes of sampled data.

The highest recorded values across the whole range of measurements should be used as inputs to the calculations described in BS EN 61000-3-11 to remove background flicker values. Then the required maximum supply impedance values can be calculated as described in Annex A.2-3. Note that occasional very high values may be due to faults on the associated HV network and may be discounted, though care should be taken to avoid discounting values which appear regularly.

A.7.3.6 Electricity Storage Device

Electricity Storage devices can be connected to the DNO’s Distribution Network directly or using Inverters.
For those connected via **Inverters**, the type verification testing and **Interface Protection** requirements shall be as specified in Annex A.7.1

For those connected directly to the **DNO’s Distribution Network**, the type verification testing and **Interface Protection** requirements shall be as specified in Annex A.7.2.

The tests associated with any requirements which have been identified in Annex A4 as not being applicable to **Electricity Storage** devices can be considered to be excluded tests in this Annex A7.
Annex B – Type B

B.1 Application

The application for connection of a **Type B Power Generating Module** should be made to the **DNO** using the Standard Application Form on the **DNO** website.
B.2 Power Generating Module Document Type B

Form B2-1 Power Generating Module Document for Type B Power Generating Modules

Compliance Statement

This document shall be completed by the **Generator**

Note: For phased installations reference to **PGM** in this form should be read as reference to **Generating Units** and the project phase noted.

<table>
<thead>
<tr>
<th>Power Generating Module (PGM)</th>
<th>Distribution Network Owner (DNO):</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM Name:</td>
<td>DNO Name: ABC electricity distribution</td>
</tr>
<tr>
<td>Compliance Contact (name/tel/email):</td>
<td>Compliance Contact (name/tel/email):</td>
</tr>
</tbody>
</table>

Key to Submission Stage

- **A** – **Application**: Submission of the Standard Application Form.
- **E** – **Energisation**: Documentation required prior to Energisation.
- **IS** – **Initial Submission**: The programme of initial compliance document submission to be agreed between the **Generator** and the **DNO** as soon as possible after acceptance of a Connection Offer. The **Power Generating Module Document** shall be completed as agreed in accordance with paragraph 17.2.2 at least 28 days before the **Generator** wishes to synchronise its **Power Generating Module** for the first time.
- **IONS** – **Interim Operational Notification Submission**: The **Generator** shall submit post energisation verification test documents to obtain an **Interim Operational Notification** from the **DNO**.
- **FONS** – **Final Operational Notification Submission**: The **Generator** shall submit post monitoring verification test documents within 28 days of synchronising in accordance with paragraph 17.7.2 to obtain **Final Operational Notification** from the **DNO**.

Key to evidence requested

S	Indicates that **DNO** would expect to see the results of a simulation study
P	**Generating Unit** or **Power Generating Module** design data
MI	**Manufacturers’ Information**, generic data or test results as

Key to Compliance

| Y = Yes (Compliant), |
| O = Outstanding (outstanding submission) |
| UR= Unresolved issue |
appropriate

D - Copies of correspondence or other documents confirming that a requirement has been met

T - Indicates that the DNO would expect to see results of, and/or witness, tests or monitoring which demonstrates compliance

TV - Indicates Type Test reports (if Generator pursues this compliance option)

N = No (Non-Compliant)

Note that second part of this form is split into two Parts, the Part 1 is applicable to **Synchronous Power Generating Modules**, Part 2 is applicable to **Power Park Modules**

<table>
<thead>
<tr>
<th>Issue #</th>
<th>Date of Issue</th>
<th>Compliance Declaration Signatory Name</th>
<th>Compliance Declaration Signature</th>
<th>Issue Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DD/MM/YY</td>
<td>I declare that the details provided in this issue of this Power Generating Module Document comply with the requirements of G99/NI</td>
<td>Insert brief description of amendment</td>
<td></td>
</tr>
</tbody>
</table>

Details of Power Generating Module

- **Connection Voltage**
- **Registered Capacity**
- **Manufacturer / Reference**
- **Technology Type**
<table>
<thead>
<tr>
<th>G99/NI Reference</th>
<th>Compliance Requirement of the Power Generating Module</th>
<th>Submission Stage</th>
<th>Evidence Requested (and / or)</th>
<th>Compliance Y, O, UR, N</th>
<th>Generator’s Statement (Provide document references with any additional comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2.1, 17.2.3, 17.7.1</td>
<td>Confirmation that a completed Standard Application Form has been submitted to the DNO</td>
<td>A, IS, IONS</td>
<td>P, MI, D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>Site Responsibility Schedule</td>
<td>E</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.4.2</td>
<td>Power Quality – Voltage fluctuations and Flicker: The installation shall be designed in accordance with EREC P28</td>
<td>IS</td>
<td>MI, D, TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.4.3</td>
<td>Power Quality – Harmonics: The installation shall be designed in accordance with EREC G5</td>
<td>IS</td>
<td>MI, D, TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>Reactive Power capability Confirm compliance with Section 12.5 by carrying out simulation study in accordance with B.4.2 and by submission of a report</td>
<td>IS</td>
<td>S, MI, TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Requirement</td>
<td>IS</td>
<td>MI, TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----</td>
<td>-----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12.2</td>
<td>Confirm that the plant and apparatus is able to continue to operate during frequency ranges specified in 12.2</td>
<td>IS</td>
<td>MI, TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2.4</td>
<td>Limited Frequency Sensitive Mode – Over frequency</td>
<td>IS</td>
<td>S, TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confirm the compliance with 12.2.5 by carrying out simulation study in accordance with B.4.5 and by submission of a report</td>
<td>IS</td>
<td>MI, TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1.3</td>
<td>Confirm the Active Power set point can be adjusted in accordance with instructions issued by the DNO</td>
<td>IS</td>
<td>MI, TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3</td>
<td>Fault Ride Through</td>
<td>IS</td>
<td>MI, TV, S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confirm the compliance with 12.3 by carrying out simulation study in accordance with B.4.4 and by submission of a report. Testing of Fault Ride Through is not required.</td>
<td>IS</td>
<td>MI, TV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Section 10 and Form B2-2 | **Interface Protection:**
- Over and under voltage protection
- Over and Under Frequency protection
- Loss of mains protection
Other protection:
- Details of any special protection, eg Pole Slipping or islanding
As an alternative to demonstrating protection compliance with Section 10 | IS, IONS | MI, TV, T | |
using Manufacturers' Information or type test reports, site tests can be undertaken at the time of commissioning the **Power Generating Module**

<table>
<thead>
<tr>
<th>Test Requirements</th>
<th>Description</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8, 17.4, 17.5</td>
<td>SCADA commissioning and controllability tests; including completion of the controllability test sheet in Annex B.10</td>
<td>IONS T</td>
</tr>
<tr>
<td>12.2</td>
<td>Frequency Response Tests
Confirm the Synchronous Power Generating Module meets the requirements of 12.2 by testing in accordance with B.5.2</td>
<td>IONS T, MI, TV</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Output Power with falling frequency
Confirm the Synchronous Power Generating Module meets the requirements of 12.2.4 by testing in accordance with B.5.3</td>
<td>IONS T, MI, TV</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Automatic reconnection
Confirm by testing that the reconnection sequence starts after a minimum delay of 60 s for restoration of voltage and frequency in accordance with paragraph 10.3.4</td>
<td>IONS T, MI, TV</td>
</tr>
<tr>
<td>B3</td>
<td>Installation and Commissioning Form B3 completed with signed acceptance from the DNO representative</td>
<td>IONS D</td>
</tr>
<tr>
<td>17.8</td>
<td>Successful completion of 12-month monitoring period</td>
<td>FONS D</td>
</tr>
<tr>
<td>G99/NI Reference</td>
<td>Compliance Requirement of the Power Generating Module</td>
<td>Submission Stage</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>17.2.1, 17.2.3, 17.7.1</td>
<td>Confirmation that a completed Standard Application Form has been submitted to the DNO</td>
<td>A, IS, IONS</td>
</tr>
<tr>
<td>14.3</td>
<td>Site Responsibility Schedule</td>
<td>E</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Power Quality – Voltage fluctuations and Flicker:</td>
<td>IS</td>
</tr>
<tr>
<td></td>
<td>The installation shall be designed in accordance with EREC P28</td>
<td></td>
</tr>
<tr>
<td>9.4.3</td>
<td>Power Quality – Harmonics:</td>
<td>IS</td>
</tr>
<tr>
<td></td>
<td>The installation shall be designed in accordance with EREC G5</td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>Reactive Power capability</td>
<td>IS</td>
</tr>
<tr>
<td></td>
<td>Confirm compliance with Section 12.5 by carrying out simulation study in accordance with B.4.2 and by submission of a report</td>
<td></td>
</tr>
<tr>
<td>12.2.5</td>
<td>Limited Frequency Sensitive Mode – Over frequency</td>
<td>IS</td>
</tr>
<tr>
<td>Section 10 and Form B2-2</td>
<td>Interface Protection:</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Over and under voltage protection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Over and Under Frequency protection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Loss of mains protection</td>
<td></td>
</tr>
<tr>
<td>Other protection:</td>
<td>• Details of any special protection, eg Pole Slipping or islanding</td>
<td></td>
</tr>
</tbody>
</table>

As an alternative to demonstrating protection compliance with Section 10

<table>
<thead>
<tr>
<th>12.2</th>
<th>Confirm that the plant and apparatus is able of continue to operate during frequency ranges specified in 12.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS MI, TV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.1.3</th>
<th>Confirm the Active Power set point can be adjusted in accordance with instructions issued by the DNO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS MI, TV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.3 and 12.6</th>
<th>Fault Ride Through and Fast Fault Current Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Confirm the compliance with 12.3 and 12.6 by carrying out simulation study in accordance with B.4.4 and by submission of a report. Testing of Fault Ride Through is not required.</td>
</tr>
<tr>
<td></td>
<td>IS MI, TV, S</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>12.8, 17.4, 17.5</td>
<td>SCADA commissioning and controllability tests; including completion of the controllability test sheet in Annex B.10</td>
</tr>
<tr>
<td>12.2</td>
<td>Frequency Response Test
Confirm the Power Park Module meets the requirements of 12.2 by testing in accordance with B.6.2</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Automatic reconnection
Confirm by testing that the reconnection sequence starts after a minimum delay of 60 s for restoration of voltage and frequency in accordance with paragraph 10.3.4</td>
</tr>
<tr>
<td>B.3</td>
<td>Installation and Commissioning Form B3 completed with signed acceptance from the DNO representative</td>
</tr>
<tr>
<td>17.8</td>
<td>Successful completion of 12-month monitoring period</td>
</tr>
</tbody>
</table>
Site Compliance and Commissioning test requirements for Type B Power Generating Modules

Form B2-2: Site Compliance and Commissioning test requirements for Type B Power Generating Modules

This form should be completed if site compliance tests are being undertaken for some or all of the Interface Protection where it is not Type Tested and for other compliance tests that are being undertaken on site.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliance by provision of Manufacturers’ Information or type test reports. Reference number should be detailed and Manufacturers’ Information attached.</th>
<th>Compliance by commissioning tests. Tick if true and complete relevant sections of form below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over and under voltage protection HV – calibration test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and under voltage protection HV – stability test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and Under Frequency protection – calibration test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and Under Frequency protection - stability test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of mains protection – calibration test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of mains protection – stability test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring functional tests: If required by para 15.2.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generator Details:

Generator (name)

Installation details:

Address

Post Code

Date of commissioning
Over and Under Voltage Protection Tests LV

Where the **Connection Point** is at LV the **Generator** shall demonstrate compliance with this EREC G99/NI in respect of Over and Under Voltage Protection by provision of **Manufacturers’ Information**, type test reports or by undertaking the following tests on site. **LV**: 400 V.

Calibration and Accuracy Tests

<table>
<thead>
<tr>
<th>Phase</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Pickup Voltage</th>
<th>Relay Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(measured value plus or minus 2 V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower Limit</td>
<td>Measured Value<sup>1</sup></td>
</tr>
<tr>
<td>Over Voltage</td>
<td></td>
<td></td>
<td>1.10 pu</td>
<td>0.5 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L2 – L3</td>
<td>3.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L3 – L1</td>
<td>2.0 s</td>
</tr>
</tbody>
</table>

¹ **Measured Value – Pickup Voltage**: Nominal voltages applied to the protection and slowly increase/decrease in steps no greater than 0.5% of the voltage setting. Pickup voltage within ±1.65 V of setting value.

² **Measured Value – Relay Operating Time**: Stepping test voltage from nominal value to 2 V above/below the measured pickup voltage. Relay operating time to be no shorter than lower limit and no greater than upper limit.

Stability Tests

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Test Condition</th>
<th>Test Voltage all phases</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
</table>

1. **Measured Value – Pickup Voltage**: Nominal voltages applied to the protection and slowly increase/decrease in steps no greater than 0.5% of the voltage setting. Pickup voltage within ±1.65 V of setting value.

2. **Measured Value – Relay Operating Time**: Stepping test voltage from nominal value to 2 V above/below the measured pickup voltage. Relay operating time to be no shorter than lower limit and no greater than upper limit.
Over and Under Voltage Protection HV.

Where the Connection Point is at HV the Generator shall demonstrate compliance with this EREC G99/NI in respect of Over and Under Voltage Protection by provision of Manufacturers’ Information, type test reports or by undertaking the following tests on site.

Tests referenced to 110 V ph-ph VT output.

Calibration and Accuracy Tests.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Pickup Voltage</th>
<th>Relay Operating Time</th>
<th>Measured Value ± 2 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 - L2</td>
<td>1.1 pu</td>
<td>0.5 s</td>
<td>119.35</td>
<td>122.65</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>L2 - L3</td>
<td></td>
<td>0.5 s</td>
<td>249.0 V</td>
<td>257.0 V</td>
<td>0.45 s</td>
</tr>
<tr>
<td>L3 - L1</td>
<td></td>
<td>0.5 s</td>
<td>199.5 V</td>
<td>142.0 V</td>
<td>2.95 s</td>
</tr>
<tr>
<td>Under Voltage Stage 1</td>
<td>195.5 V</td>
<td>2.5 s</td>
<td>< UV Stage 1</td>
<td>134.0 V</td>
<td>1.95 s</td>
</tr>
<tr>
<td>Under Voltage Stage 2</td>
<td>138.0 V</td>
<td>2.5 s</td>
<td>< UV Stage 2</td>
<td>134.0 V</td>
<td>1.95 s</td>
</tr>
</tbody>
</table>
Stage 1 Under Voltage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Lower Limit</th>
<th>Measured Value</th>
<th>Upper Limit</th>
<th>Result</th>
<th>Test Value</th>
<th>Lower Limit</th>
<th>Measured Value</th>
<th>Upper Limit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 - L2</td>
<td>0.85 pu</td>
<td>3.0 s</td>
<td>91.85</td>
<td>95.15</td>
<td>Pass/Fail</td>
<td>Measured value minus 2 V</td>
<td>3.0 s</td>
<td>3.1 s</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>L2 - L3</td>
<td>0.6 pu</td>
<td>2.0 s</td>
<td>64.35</td>
<td>67.65</td>
<td>Pass/Fail</td>
<td>Measured value minus 2 V</td>
<td>2.0 s</td>
<td>2.1 s</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>L3 - L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measured Value - Pickup Voltage: Nominal voltages applied to the protection and slowly increase/decrease in steps no greater than 0.5% of the voltage setting. Pickup voltage within ±1.65 V of setting value.

Measured Value - Relay Operating Time: Stepping test voltage from nominal value to 2 V above/below the measured pickup voltage. Relay operating time to be no shorter than lower limit and no greater than upper limit.

Stage 2 Under Voltage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Lower Limit</th>
<th>Measured Value</th>
<th>Upper Limit</th>
<th>Result</th>
<th>Test Value</th>
<th>Lower Limit</th>
<th>Measured Value</th>
<th>Upper Limit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 - L2</td>
<td>0.85 pu</td>
<td>3.0 s</td>
<td>91.85</td>
<td>95.15</td>
<td>Pass/Fail</td>
<td>Measured value minus 2 V</td>
<td>3.0 s</td>
<td>3.1 s</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>L2 - L3</td>
<td>0.6 pu</td>
<td>2.0 s</td>
<td>64.35</td>
<td>67.65</td>
<td>Pass/Fail</td>
<td>Measured value minus 2 V</td>
<td>2.0 s</td>
<td>2.1 s</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>L3 - L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Over and Under Voltage Protection Tests HV

Referenced to 110 V ph-ph VT output

Stability Tests

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Test Condition (3-Phase Value)</th>
<th>Test Voltage All phases ph-ph</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>-----------</td>
<td>< OV</td>
<td>119 V</td>
<td>5.00 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Over Voltage</td>
<td>121 V</td>
<td>1.0 s</td>
<td>> OV</td>
<td>122.3 V</td>
<td>1.95 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>-----------</td>
<td>> UV Stage 1</td>
<td>126.3 V</td>
<td>5.00 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Under Voltage Stage 1</td>
<td>93.5 V</td>
<td>2.5 s</td>
<td>< UV Stage 1</td>
<td>90 V</td>
<td>2.95 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
<tr>
<td>Under Voltage Stage 2</td>
<td>66.0 V</td>
<td>2.5 s</td>
<td>< UV Stage 2</td>
<td>86 V</td>
<td>1.95 s</td>
<td>Pass/Fail</td>
<td></td>
</tr>
</tbody>
</table>
Additional Comments / Observations:

Over and Under Frequency Protection.

The *Generator* shall demonstrate compliance with this EREC G99/NI in respect of Over and Under Frequency Protection by provision of *Manufacturers’ Information*, type test reports or by undertaking the following tests on site.

Calibration and Accuracy Tests.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Time Delay</th>
<th>Pickup Frequency</th>
<th>Relay Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.00 Hz</td>
<td>1.0 s</td>
<td>51.90</td>
<td>52.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52.30 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pass/ Fail</td>
</tr>
<tr>
<td>Under Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.00 Hz</td>
<td>0.5 s</td>
<td>47.90</td>
<td>48.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47.70 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.6 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pass/ Fail</td>
</tr>
</tbody>
</table>

Stability Tests.

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Test Condition</th>
<th>Test Frequency</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over Frequency</td>
<td>52.0 Hz</td>
<td>1.0 s</td>
<td>> OF</td>
<td>52.2 Hz</td>
<td>0.95 s</td>
<td></td>
<td>Pass/ Fail</td>
</tr>
<tr>
<td>Inside Normal band</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under Frequency</td>
<td>48.0 Hz</td>
<td>0.5 s</td>
<td>< UF</td>
<td>47.2 Hz</td>
<td>0.45 s</td>
<td></td>
<td>Pass/ Fail</td>
</tr>
</tbody>
</table>

Over frequency test - Frequency shall be stepped from 51.8 Hz to the test frequency and held for the test duration and then stepped back to 51.8 Hz.

Under frequency test - Frequency shall be stepped from 48.2 Hz to the test frequency and held for the test duration and then stepped back to 48.7 Hz.
Additional Comments / Observations:

Details of Loss of Mains Protection.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Manufacturer’s type</th>
<th>Date of Installation</th>
<th>Settings</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loss-of-Mains (LOM) Protection Tests.

The Generator shall demonstrate compliance with this EREC G99/NI in respect of LOM Protection by either providing the DNO with appropriate Manufacturers' Information, type test reports or by undertaking the following tests on site.

Calibration and Accuracy Tests.

Ramp in range 49.5 – 50.5 Hz

<table>
<thead>
<tr>
<th>Setting = 1.0 Hz⁻¹, Time Delay 500 ms</th>
<th>Pickup (±0.05 Hz⁻¹)</th>
<th>Relay Operating Time RoCoF = ±0.10 Hz⁻¹ above setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing Frequency</td>
<td>Lower Limit</td>
<td>Measured Value⁵</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>1.05</td>
</tr>
<tr>
<td>Reducing Frequency</td>
<td>0.95</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Ramp in range 49.5 – 50.5 Hz

<table>
<thead>
<tr>
<th>Increasing Frequency</th>
<th>Lower Limit</th>
<th>Measured Value⁵</th>
<th>Upper Limit</th>
<th>Result</th>
<th>Test Condition</th>
<th>Measured Value⁶</th>
<th>Lower Limit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>1.05</td>
<td>Pass/Fail</td>
<td>3.00 Hz⁻¹</td>
<td>0.5 s</td>
<td>Pass/Fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reducing Frequency</td>
<td>0.95</td>
<td>1.05</td>
<td>Pass/Fail</td>
<td>3.00 Hz⁻¹</td>
<td>0.5 s</td>
<td>Pass/Fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Measured Value – Pickup RoCoF: Apply test voltage with frequency of 49.5 Hz to be applied to the protection and ramp up to 50.5 Hz at a RoCoF of 0.1 Hz⁻¹, repeating the test incrementing the RoCoF at steps of 0.05 Hz⁻¹ until protection operates. Repeat for reducing frequency (50.5 Hz to 49.5 Hz). Pickup RoCoF value within ±0.05 Hz⁻¹ of setting value.

² Measured Value – Relay Operating Time: Test increasing / reducing frequency at a rate of 0.1 Hz⁻¹ above setting value. Relay should not operate within 500 ms.
LoM Protection - Stability test.

<table>
<thead>
<tr>
<th>Test Condition</th>
<th>Test frequency ramp</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td>< RoCoF setting (increasing f)</td>
<td>+0.95 Hzs$^{-1}$</td>
<td>2.1 s</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>< RoCoF setting (reducing f)</td>
<td>-0.95 Hzs$^{-1}$</td>
<td>2.1 s</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>> RoCoF setting (increasing f)</td>
<td>+1.20 Hzs$^{-1}$ (ramp between 49.80 and 50.34 Hz)</td>
<td>0.45 s</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>> RoCoF setting (reducing f)</td>
<td>-1.20 Hzs$^{-1}$ (ramp between 50.30 and 49.76 Hz)</td>
<td>0.45 s</td>
<td>Pass/Fail</td>
</tr>
</tbody>
</table>

Additional Comments / Observations:

LoM Protection - Stability test.

- **Start Frequency**: 49.5 Hz
 - **Change**: +50 degrees
 - **Confirm no trip**: Yes/ NA

Wiring functional tests:

- If required by para 15.2.1, confirm that wiring functional tests have been carried out in accordance with the instructions below.

Where components of a Power Generating Module are separately **Type Tested** and assembled into a Power Generating Module, if the connections are made via loose wiring, rather than specifically designed error-proof connectors, then it will be necessary to prove the functionality of the components that rely on the connections that have been made by the loose wiring.

As an example, consider a **Type Tested** alternator complete with its control systems etc. It needs to be connected to a **Type Tested Interface Protection** unit. In this case there are only three voltage connections to make, and one tripping circuit. The on-site checks need to confirm that the Interface Protection sees the correct three phase voltages and that the tripping circuit is operative. It is not necessary to inject the Interface Protection etc to prove this. Simple functional checks are all that are required.

Test schedule:

- With **Generating Unit** running and energised, confirm L1, L2, L3 voltages on **Generating Unit** and on **Interface Protection**.
- Disconnect one phase of the control wiring at the **Generating Unit**. Confirm received voltages at the **Interface Protection** have one phase missing.
- Repeat for other phases.
Confirm a trip on the Interface Protection trips the Generating Unit.

Insert here any additional tests which have been carried out (as identified as being required by Form B2-1)
B.3 Installation and Commissioning Confirmation Form

Form B3- Installation and Commissioning Confirmation Form for Type B PGMs

Please complete and provide this document for every Power Generating Facility.

Part 1 should be completed for the Power Generating Facility.

Part 2 should be completed for each of the Power Generating Modules being commissioned. Where the installation is phased the form should be completed on a Generating Unit basis as each part of the installation is completed in accordance with EREC G99/NI paragraph 15.3.3. For phased installations reference to PGM in this form should be read as reference to Generating Units.

<table>
<thead>
<tr>
<th>Form B3 Part 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>To DNO</td>
</tr>
<tr>
<td>9AA</td>
</tr>
<tr>
<td>99 West St, Imaginary Town, ZZ99</td>
</tr>
</tbody>
</table>

Installer or Generator Details:

<table>
<thead>
<tr>
<th>Installer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accreditation/Qualification</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Post Code</td>
</tr>
<tr>
<td>Contact person</td>
</tr>
<tr>
<td>Telephone Number</td>
</tr>
<tr>
<td>E-mail address</td>
</tr>
</tbody>
</table>

Installation Details:

<table>
<thead>
<tr>
<th>Site Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Post Code</td>
</tr>
<tr>
<td>Site Telephone Number</td>
</tr>
<tr>
<td>MPRN(s)</td>
</tr>
<tr>
<td>Location within Generator's Installation</td>
</tr>
<tr>
<td>Location of Lockable Isolation Switch</td>
</tr>
</tbody>
</table>
Details of Power Generating Module(s):

<table>
<thead>
<tr>
<th>Manufacturer / Reference</th>
<th>Date of Installation</th>
<th>Technology Type</th>
<th>Manufacturers Reference Number (Product id on ENA database) and or Equipment Certificate references as applicable</th>
<th>Power Generating Module Registered Capacity in kW</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commissioning Checks:

<table>
<thead>
<tr>
<th>Description</th>
<th>Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator's Installation satisfies the requirements of BS7671 (IET Wiring Regulations).</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Suitable lockable points of isolation have been provided between the PGMs and the rest of the Generator's Installation.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Labels have been installed at all points of isolation in accordance with EREC G99/NI.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Interlocking that prevents PGMs being connected in parallel with the DNO's Distribution Network (without synchronising) is in place and operates correctly.</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>
Form B3 Part 2

Power Generating Module reference or name

<table>
<thead>
<tr>
<th>Information to be enclosed.</th>
<th>Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description.</td>
<td></td>
</tr>
<tr>
<td>Final copy of circuit diagram.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Schedule of protection settings (may be included in circuit diagram).</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

Commissioning Checks.

<table>
<thead>
<tr>
<th>The Interface Protection settings have been checked and comply with EREC G99/NI.</th>
<th>Yes / No*</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PGM successfully synchronises with the DNO's Distribution Network without causing significant voltage disturbance.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully runs in parallel with the DNO's Distribution Network without tripping and without causing significant voltage disturbances.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully disconnects without causing a significant voltage disturbance, when it is shut down.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Interface Protection operates and disconnects the PGMs quickly (within 1s) when a suitably rated switch, located between the PGMs and the DNO's incoming connection, is opened.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM remains disconnected for at least 60 s after switch is reclosed.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Loss of tripping and auxiliary supplies. Where applicable, loss of supplies to tripping and protection relays results in either PGM lockout or an alarm to a 24 hour manned control centre.</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

*Circle as appropriate. If "No" is selected the **Power Generating Facility** is deemed to have failed the commissioning tests and the **Power Generating Module** shall not be put in service.

Additional Comments / Observations:
Declaration – to be completed by Generator or Generators Appointed Technical Representative.

I declare that for the **Type B Power Generating Module** within the scope of this EREC G99/NI, and the installation:

1. The **Power Generating Module Document** Form B2-1 is complete
2. The commissioning checks detailed in Form B2-2 have been successfully completed*.
3. The commissioning checks detailed in this Form B3 have been successfully completed.

*delete if not applicable ie if the **Interface Protection** and ride through capabilities are **Type Tested**.

Name:
Signature:
Date:

Company

Position:

Declaration – to be completed by DNO Witnessing Representative.

I confirm that I have witnessed:

1. The commissioning checks detailed in Form B2-2 *;
2. The commissioning checks detailed in this Form B3 and that the results are an accurate record of the checks.

*delete if not applicable ie if the **Interface Protection** and ride through capabilities are **Type Tested**

Name:
Company Name

Signature:
Date:
B.4 Simulation Studies for Type B Power Generating Modules

B.4.1 Scope

B.4.1.1 This Annex sets out the simulation studies required to be submitted to the DNO to demonstrate compliance with EREC G99/NI unless otherwise agreed with the DNO. The studies specified in this Annex will normally be sufficient to demonstrate compliance. However, the DNO may agree an alternative set of studies proposed by the Generator provided the DNO deems the alternative set of studies sufficient to demonstrate compliance with the EREC G99/NI and the Connection Agreement.

B.4.1.2 The Generator shall submit simulation studies in the form of a report to demonstrate compliance. In all cases the simulation studies shall utilise models applicable to the Synchronous Power Generating Module or Power Park Module with proposed or actual parameter settings. Reports should be submitted in English with all diagrams and graphs plotted clearly with legible axes and scaling provided to ensure any variations in plotted values is clear. In all cases the simulation studies shall be presented over a sufficient time period to demonstrate compliance with all applicable requirements.

B.4.1.3 The DNO may permit relaxation from the requirement in paragraph B.4.2 to paragraph B.4.5 where Manufacturers' Information for the Power Generating Module has been provided which details the characteristics from appropriate simulations on a representative installation with the same equipment and settings and the performance of the Power Generating Module can, in the DNO’s opinion, reasonably represent that of the installed Power Generating Module.

B.4.2 Reactive Capability across the Voltage Range

B.4.2.1 If specified by the DNO the Generator shall supply simulation studies to demonstrate the capability to meet Section 12.5 by submission of a report containing:

(i) a load flow simulation study result to demonstrate the maximum lagging Reactive Power capability of the Synchronous Power Generating Module or Power Park Module at Registered Capacity when the Connection Point voltage is at nominal (1 pu).

(ii) a load flow simulation study result to demonstrate the maximum leading Reactive Power capability of the Synchronous Power Generating Module or Power Park Module at Registered Capacity when the Connection Point voltage is at nominal (1 pu).

B.4.2.2 In the case of a Power Park Module where the load flow simulation studies show that the individual Generating Units deviate from nominal voltage to meet the Reactive Power requirements then evidence shall be provided from factory (eg Manufacturers' Information) or site testing that the Generating Unit is capable of operating continuously at the operating points determined in the load flow simulation studies.

B.4.3 Not used

B.4.4 Fault Ride Through and Fast Fault Current Injection

B.4.4.1 This section applies to Power Generating Modules to demonstrate the modules Fault Ride Through and Fast Fault Current injection capability.
B.4.4.2 The Generator shall supply time series simulation study results to demonstrate the capability of Synchronous Power Generating Modules and Power Park Modules to meet paragraphs 12.3 and paragraph 12.6 as applicable by submission of a report containing:

(i) a time series simulation study of a 140 ms three phase short circuit fault with a retained voltage as detailed in Table B.4.1 applied at the Connection Point of the Power Generating Module.

(ii) a time series simulation study of 140 ms unbalanced short circuit faults with a retained voltage as detailed in Table B.4.1 on the faulted phase(s) applied at the Connection Point of the Power Generating Module. The unbalanced faults to be simulated are:

1. a phase to phase fault
2. a two phase to earth fault
3. a single phase to earth fault.

Table B.4.1

<table>
<thead>
<tr>
<th>Power Generating Module</th>
<th>Retained Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Power Generating Module</td>
<td>5%</td>
</tr>
<tr>
<td>Power Park Module</td>
<td>15%</td>
</tr>
</tbody>
</table>

B.4.4.3 The simulation study should be completed with the Power Generating Module operating at full Active Power and maximum leading Reactive Power and the fault level at the Connection Point at minimum as notified by the DNO.

B.4.4.4 The simulation study will show acceptable performance providing compliance with the requirements of paragraph 12.3.1.7 (e) are demonstrated.

B.4.4.5 In the case of Power Generating Modules comprised of Generating Units in respect of which the Generator’s reference to Manufacturers’ Information has been accepted by the DNO for Fault Ride Through, B.4.4.2 will not apply provided:

(i) the Generator demonstrates by load flow simulation study result that the faults and voltage dips at either side of the Generating Unit transformer corresponding to the required faults and voltage dips in B.4.4.2 applied at the Connection Point are less than those included in the Manufacturers’ Information, or;

(ii) the same or greater percentage faults and voltage dips in B.4.4.2 have been applied at either side of the Generating Unit transformer in the Manufacturers’ Information.

B.4.5 Limited Frequency Sensitive Mode – Over Frequency (LFSM-O)

B.4.5.1 This section applies to Power Generating Modules to demonstrate the capability to modulate Active Power at high frequency as required by Section 12.2.4.
B.4.5.2 Simulation studies shall be undertaken to demonstrate the governor or controller model response to increasing frequency.

The simulation study event shall be equivalent to:

(i) a sufficiently large increase in the measured system frequency ramped over 10 s to cause a decrease in Active Power output in accordance with the Droop setting followed by

(ii) 60 s of steady state with the measured system frequency increased to the same level as in B.4.5.4 (i) as illustrated in Figure B.4.1 below

(iii) then decrease of the measured system frequency ramped over 10 s to cause an increase in Active Power output back to the maximum Active Power level followed by at least 60 s of steady output.

![Figure B.4.1 – LFSM-O frequency step response simulation](image)

B.4.5.3 Simulation studies shall be performed for Limited Frequency Sensitive Mode (LFSM). The simulation study results should indicate Active Power and frequency. The Active Power reduction should occur between 50.4 Hz and 52 Hz in accordance with the Droop setting.
B.5 Compliance Testing of Synchronous Power Generating Modules

B.5.1 Scope

B.5.1.1 This Annex sets out the tests contained therein to demonstrate compliance with the relevant clauses of the EREC G99/NI.

B.5.1.2 The tests specified in this Annex will normally be sufficient to demonstrate compliance however the DNO may:

(i) agree an alternative set of tests provided the DNO deems the alternative set of tests sufficient to demonstrate compliance with this EREC G99/NI and the Connection Agreement; and/or

(ii) require additional or alternative tests if information supplied to the DNO during the compliance process suggests that the tests in this Annex will not fully demonstrate compliance with the relevant section of the EREC G99/NI or the Connection Agreement.

(iii) Agree a reduced set of tests for subsequent Synchronous Power Generating Module following successful completion of the first Synchronous Power Generating Module tests in the case of a Power Generating Facility comprised of two or more Synchronous Power Generating Modules which the DNO reasonably considers to be identical.

If:

(a) the tests performed pursuant to B.6.1.2(iii) in respect of subsequent Synchronous Power Generating Modules do not replicate the full tests for the first Synchronous Power Generating Module, or

(b) any of the tests performed pursuant to B.6.1.2(iii) do not fully demonstrate compliance with the relevant aspects of EREC G99/NI, the Connection Agreement, or an any other contractual agreement with the DNO if applicable;

then notwithstanding the provisions above, the full testing requirements set out in this Annex will be applied.

B.5.1.3 The Generator is responsible for carrying out the tests set out in and in accordance with this Annex and the Generator retains the responsibility for the safety of personnel and plant during the test. The DNO will witness all of the tests outlined or agreed in relation to this Annex unless the DNO decides and notifies the Generator otherwise. For all on site DNO witnessed tests the Generator should ensure suitable representatives from the Generator and Manufacturer (if appropriate) are available on site for the entire testing period.

B.5.1.4 Full Synchronous Power Generating Module testing is to be completed as defined in B.5.2 and B.5.3.

B.5.1.5 The DNO may permit relaxation from the requirement B.5.2 and B.5.3 where Manufacturers’ Information for the Synchronous Power Generating Module has been provided which details the characteristics from tests on a representative machine with the same equipment and settings and the performance of the Synchronous Power Generating Module can, in the DNO’s opinion, reasonably represent that of the installed Synchronous Power Generating Module at that site.
B.5.2 Governor and Load Controller Response Performance

B.5.2.1 The governor and load controller response performance will be tested by injecting simulated frequency deviations into the governor and load controller systems.

B.5.2.2 The two frequency response tests in Limited Frequency Sensitive Mode (LFSM) to demonstrate LFSM-O capability to a frequency injection as shown by Figure B.5.1 and Figure B.5.2 are to be conducted at Registered Capacity (although a lower power output may be agreed with the DNO if site conditions preclude attaining Registered Capacity, such as an absence of adequate wind).

B.5.2.3 There should be sufficient time allowed between tests for control systems to reach steady state. The injection signal should be maintained until the Active Power (MW) output of the Synchronous Power Generating Module or CCGT Module has stabilised. The DNO may require repeat tests should the tests give unexpected results.

B.5.2.4 The frequency input and the expected Active Power response which are illustrated for different time periods from 0 s to 130 s in Figures B.5.1 for a step change in frequency and B.5.2 for a ramp change in frequency. These should be in accordance with Section 12.2.4 and undamped oscillations should not occur after the step or ramp frequency change. Note for diagram purposes only a short interval is shown between the frequency increase and decrease for each test. In practice the return step or ramp can start any time after the output has stabilised after the first step or ramp.

B.5.2.5 The response should commence within 2 s and the response shall be to the left of the red line (ie between the green and red lines), and as close to the green line as possible when following the frequency step or ramp. Note that the red line represents the 0.5 s⁻¹ specified in 12.2.5.

![Figure B.5.1: LFSM-O step response test](image-url)
Figure B.5.1(ii): LFSM-O step response test – target response and limits

Figure B.5.1(iii): LFSM-O step response test – expansion of the allowed 2s delay (frequency increase)
Figure B.5.1(vi): LFSM-O step response test – expansion of the allowed 2s delay (frequency decrease)

* The frequency step Δf will generally be +2.0 Hz unless an injection of this size causes a reduction in plant output that takes the operating point below Minimum Stable Operating Level in which case an appropriate injection should be calculated in accordance with the following:

For example 0.6 Hz is needed to take an initial output 100% to a final output of 70%. If the initial output is not 100% and the Minimum Stable Operating Level is not 70% then the injected step should be adjusted accordingly as shown in the example given below:

<table>
<thead>
<tr>
<th>Initial output</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Stable Operating Level</td>
<td>70%</td>
</tr>
<tr>
<td>Frequency controller Droop</td>
<td>10%</td>
</tr>
<tr>
<td>Frequency to be injected</td>
<td>$(1.00 - 0.70) \times 0.04 \times 50 = 0.6$ Hz</td>
</tr>
</tbody>
</table>
Figure B.5.2(i): LFSM-O ramp response test – frequency injection

Figure B.5.2(ii): LFSM-O ramp response test – target response and limits
Figure B.5.2(iii): LFSM-O ramp response test – expansion (frequency increase)

Figure B.5.2(iv): LFSM-O ramp response test – expansion (frequency decrease)
B.5.3 Compliance with Output Power with falling frequency Functionality Test

B.5.3.1 The Generator will propose and agree a test procedure with the DNO, which will demonstrate how the Synchronous Power Generating Module Active Power output responds to changes in system frequency under steady state conditions.

B.5.3.2 The tests can be undertaken by the Synchronous Power Generating Module powering a suitable load bank, or alternatively using the test set up of Figure A.7.6. In both cases a suitable test could be to start the test at nominal frequency with the Synchronous Power Generating Module operating at 100% of its Registered Capacity.

B.5.3.3 The frequency should then be set to 49.5 Hz for 5 minutes. The output should remain at 100% of Registered Capacity.

B.5.3.4 The frequency should then be set to 49.0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output shall not be below 99% of Registered Capacity.

B.5.3.5 The frequency should then be set to 48.0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output shall not be below 97% of Registered Capacity.

B.5.3.6 The frequency should then be set to 47.6 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output shall not be below 96.2% of Registered Capacity.

B.5.3.7 The frequency should then be set to 47.1 Hz and held at this frequency for 20 s. The Active Power output shall not be below 95.0% of Registered Capacity and the Synchronous Power Generating Module shall not trip in less than the 20 s of the test.

B.5.3.8 The Generator shall inform the DNO if any load limiter control is additionally employed.
B.6 Compliance Testing of Power Park Modules

B.6.1 Scope

B.6.1.1 This Annex outlines the general testing requirements for Power Park to demonstrate compliance with the relevant clauses of the EREC G99/NI.

B.6.1.2 The tests specified in this Annex will normally be sufficient to demonstrate compliance however the DNO may:

i) agree an alternative set of tests provided the DNO deems the alternative set of tests sufficient to demonstrate compliance with this EREC G99/NI and the Connection Agreement; and/or

ii) require additional or alternative tests if information supplied to the DNO during the compliance process suggests that the tests in this Annex will not fully demonstrate compliance with the relevant section of this EREC G99/NI and the Connection Agreement; and/or

iii) agree a reduced set of tests if a relevant Manufacturer’s Data & Performance Report has been submitted to and deemed to be appropriate by the DNO; and/or

iv) agree a reduced set of tests for subsequent Power Park Modules following successful completion of the first Power Park Module tests in the case of a Power Generating Facility comprised of two or more Power Park Modules which the DNO reasonably considers to be identical.

If:

(a) the tests performed pursuant to B.6.1.2(iii) do not replicate the results contained in the Manufacturer’s Data & Performance Report or

(b) the tests performed pursuant to B.6.1.2(iv) in respect of subsequent Power Park Modules do not replicate the full tests for the first Power Park Module, or

(c) any of the tests performed pursuant to B.6.1.2(iii) or B.6.1.2(iv) do not fully demonstrate compliance with the relevant aspects of this EREC G99/NI and the Connection Agreement,

then notwithstanding the provisions above, the full testing requirements set out in this Annex will be applied.

B.6.1.3 The Generator is responsible for carrying out the tests set out in and in accordance with this Annex and the Generator retains the responsibility for the safety of personnel and plant during the test. The DNO will witness all of the tests outlined or agreed in relation to this Annex unless the DNO decides and notifies the Generator otherwise. For all on site DNO witnessed tests the Generator shall ensure suitable representatives from the Generator and/or Power Park Module Manufacturer (if appropriate) are available on site for the entire testing period. In all cases and in addition to any recording of signals conducted by the DNO the Generator shall record all relevant test signals.
B.6.1.4 The **Generator** shall inform the **DNO** of the following information prior to the commencement of the tests and any changes to the following, if any values change during the tests:

- All relevant transformer tap numbers; and
- Number of **Generating Units** in operation.

B.6.1.5 The **Generator** shall submit a detailed schedule of tests to the **DNO** in accordance with the compliance testing requirements of EREC G99/NI and this Annex.

B.6.1.6 The **DNO** may permit relaxation from the requirement B.6.2 where **Manufacturers’ Information** for the **Power Park Module** has been provided which details the characteristics from tests on a representative installation with the same equipment and settings and the performance of the **Power Park Module** can, in the **DNO**’s opinion, reasonably represent that of the installed **Power Park Module** at that site.

B.6.2 **Frequency Response Tests**

B.6.2.1 This section describes the procedure for performing frequency response testing on a **Power Park Module**. These tests should be scheduled at a time where there are at least 95% of the **Generating Units** within the **Power Park Module** in service. There should be sufficient MW resource forecasted in order to generate at least 65% of **Registered Capacity** of the **Power Park Module**.

B.6.2.2 The frequency controller shall be in **Limited Frequency Sensitive Mode** for each test. Simulated frequency deviation signals shall be injected into the frequency controller setpoint/feedback summing junction.

B.6.2.3 The two frequency response tests in **Limited Frequency Sensitive Mode (LFSM)** to demonstrate LFSM-O capability to a change in frequency as shown by Figures B.6.1 and B.6.2 are to be conducted at **Registered Capacity** (although a lower power output may be agreed with the **DNO** if site conditions preclude attaining **Registered Capacity**, such as an absence of adequate wind).

B.6.2.4 There should be sufficient time allowed between tests for control systems to reach steady state (depending on available power resource). The injection signal should be maintained until the **Active Power** (MW) output of the **Power Park Module** has stabilised. The **DNO** may require repeat tests should the response volume be affected by the available power, or if tests give unexpected results.

B.6.2.5 The frequency input and the expected **Active Power** response which are illustrated for different time periods from 0 s to 130 s in Figures B.6.1 for a step change in frequency and B.6.2 for a ramp change in frequency. These should be in accordance with Section 12.2.5 and undamped oscillations should not occur after the step or ramp frequency change. Note for diagram purposes only a short interval is shown between the frequency increase and decrease for each test. In practice the return step or ramp can start any time after the output has stabilised after the first step or ramp.
The response should commence within 2 s and the response shall be to the left of the red line (i.e., between the green and red lines), and as close to the green line as possible when following the frequency step or ramp. Note that the red line represents the 0.5% s⁻¹ specified in 12.2.4.

Figure B.6.1(i): LFSM-O step response test – frequency injection

Figure B.6.1(ii): LFSM-O step response test – target response and limits
Figure B.6.1(iii): LFSM-O step response test – expansion of the allowed 2s response delay (frequency increase)

Figure B.6.1(iv): LFSM-O step response test – expansion of the allowed 2s response delay (frequency decrease)
* The frequency step Δf will generally be +2.0 Hz unless an injection of this size causes a reduction in plant output that takes the operating point below **Minimum Stable Operating Level** in which case an appropriate injection should be calculated in accordance with the following:

For example, 0.6 Hz is needed to take an initial output 100% to a final output of 70%. If the initial output is not 100% and the **Minimum Stable Operating Level** is not 70% then the injected step should be adjusted accordingly as shown in the example given below:

<table>
<thead>
<tr>
<th>Initial output</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Stable Operating Level</td>
<td>70%</td>
</tr>
</tbody>
</table>

Frequency controller **Droop** 10%

Frequency to be injected $= (1.00 - 0.70) \times 0.04 \times 50 = 0.6$ Hz

![Figure B.6.2(i): LFSM-O BC2 ramp response test – frequency injection](image-url)
Figure B.6.2(ii): LFSM-O BC2 ramp response test – target response and limits

Figure B.6.2(iii): LFSM-O BC2 ramp response test – expansion (frequency increase)
Figure B.6.2(iv): LFSM-O BC2 ramp response test – expansion (frequency increase)
B.7 REMOTE TELEMETRY UNITS AND CONTROL

There is a requirement for a SCADA facility to be provided for Power Generating Facilities of certain capacities that are connected to the Distribution Network.

As a general rule, where a SCADA requirement has been determined by the DNO:

a) Where a Power Generating Facility is connected at a nominal voltage of 33 kV or is > 1 MW the DNO shall provide SCADA by the installation of its own RTU.

b) Where a Power Generating Facility is connected at a nominal voltage less than 33 kV or is < 1 MW or, then the DNO is prepared to allow the Generator to provide the RTU and associated equipment. It is considered that this will allow a Generator to specify and procure RTU equipment in conjunction with their Power Generating Facility controller.

B.7.1 RTU Type Definitions

The RTU type will be specified in the connection offer and the Generator will be advised of which variant is applicable to their Power Generating Facility during the application process. This Annex covers two different SCADA/RTU arrangements which are defined below.

These RTUs have different technical requirements and sections B.7.2 to B.7.4 detail general requirements and those specific to individual RTU types and variants.

B.7.1.2 Type 1 RTU

Type 1 RTUs are provided by the DNO. All signalling is hard wired and the signalling interface between the DNO RTU and the Power Generating Facility shall be a Cable Termination Cubicle.

B.7.1.2 Type 2 RTU

Type 2 RTUs are provided by the Generator and shall be capable of operating in the following modes:

- Mode A – The communications link between the Power Generating Facility and DCC uses 2G or 3G cellular communication. The protocol used between the RTU and DNO master station shall be DNP3. The signalling interface between the DNO and the Power Generating Facility shall be the DNO’s APN on the mobile cellular network.
- Mode B – The communications link between the Power Generating Facility and DCC uses the DNO’s Operational Communications Network. The DNO shall provide a radio modem. The signalling interface between the DNO and the Power Generating Facility shall be the serial port on the DNO radio modem. The protocol used between the RTU and DNO master station shall be IEC-60870-5-101.
B.7.2 Power Supplies

Type 1 RTUs
Responsibilities for power supplies will be detailed in the connection offer.

Type 2 RTUs
The Generator will be responsible for providing the RTU power supply. For loss of mains supply, a battery backup is required to confirm loss of mains to DCC.

For Mode B operation the Generator will be required to provide a power supply to a radio. The specification for this is listed in section B.7.4.2 of this document.

B.7.3 RTU Facilities

The facilities required at each RTU are:

- status inputs (indications and alarms)
- controls, single & double
- analogs, inputs & outputs

Type 1B and Type 2 RTUs additionally require:

- communication ports

Type 1 RTUs
For any hard wired signalling, the Generator shall provide a Cable Termination Cubicle which forms the interface between the DNO and the Power Generating Facility.

The RTU will be monitoring single digital inputs, double digital inputs and analog inputs. The required analog range for hard wired input signals is 4-20 mA DC.

The RTU will be controlling double digital outputs, single digital outputs and analog outputs.

The required analog range for hard wired output signals is 4-20 mA DC.

The wetting voltage for digital input and output signals shall be provided by the DNO and shall be either 24 V or 50 V DC. The Generator will be informed of the wetting voltage during the connection process.

Details of the signals required are given in B.7.5.

Type 2 RTUs – Mode A
The RTU will be monitoring single digital inputs and analog inputs.

The RTU will be controlling single digital outputs and analog outputs.
Type 2 RTUs – Mode B

The RTU will be monitoring single digital inputs, double digital inputs and analog inputs.

The RTU will be controlling double digital outputs, single digital outputs and analog outputs.

B.7.3.1 Status Inputs

Type 1 RTUs

For hardwired signals on Type 1 RTUs, these inputs shall be derived from clean, voltage free contacts.

Type 1 & Type 2 Mode B RTUs

Some data points require complimentary pairs of contacts as part of a Double Digital Input with one bit positively indicating open/false (01) and the other bit positively closed/false (10). Values of 00 and 11 are not logically valid and indicate Error Status. These DDIs should be configurable for consecutive digital channels in the RTU and should be configurable so that a delay can be applied before an Error Status is returned to the DCC. Unless otherwise stated by the DNO this delay shall be 100 ms.

Type 2 RTU – Mode A

Indications from field wiring should use positive indications for both true and false values for a single data point. Where these present a logical error, the RTU shall set the ‘On-line’ flag bit to 0 for this data point.

B.7.3.2 Controls

A manual Control Inhibit switch shall be provided at the RTU which prevent controls from operating. Indication of the Control Inhibit switch position will be returned to DCC.

Type 1 RTUs

For a DNO supplied RTU, the plant equipment will be controlled from the RTU by operating an interposing relay supplied by the Generator. The execute command shall cause the interposing plant relay to be energised for a configurable period of between 0.5 and 5 s. The RTU shall control the interposing relays by switching both positive and negative poles of the wetting voltage.

The Generator shall install an additional control switch in their control room. This allows the Generator to block any remote controls from the DNO RTU. This shall normally be selected for ‘Grid (Remote) Control’. The Generator shall contact DCC to request ‘Local Control’ and to agree a timeline for ‘Grid Control’ to be returned.
Type 2 RTUs

The design of the RTU shall prevent a control mal-operation in the event of any single component failure or loss of power to any device.

Type 2 RTU – Mode A Operation

The RTU shall support 'select before operate' command routine within DNP3.0 protocol.

Type 2 RTU – Mode B Operation

The RTU shall support 'select and execute' command routine within IEC-60870-5-101 protocol.

B.7.3.3 Analogs

The accuracy requirements for instrument transformers and transducers are set in Section 12.9. These requirements apply to all hardware used to derive values for SCADA analogs.

Type 1 RTU

The accuracy requirements for hardwired analog signals are set out below. Please note this only refers to the input/output hardware itself and accuracy against the physical measured quantity should not be considered.

Analog Outputs

Where the Generator or DNO is providing a 4-20 mA current output, the analog output shall be accurate to ±0.1 mA.

Analog Inputs

Where the Generator or DNO receives a 4-20 mA current input the Analog Input card shall have an analog-to-digital converter with minimum resolution of 11 bits plus sign and be accurate to ±0.5% of the instantaneous value.

Type 2 RTUs

Unless otherwise instructed by the DNO, deadbands should not be applied to analogs. If a deadband is required the DNO will specify the range of the deadband at the start of the SCADA installation process. The DNO may identify a requirement for a deadband following completion of the SCADA installation and will notify the Generator in writing and allow an appropriate amount of time for the deadband to be configured.

Analog outputs shall supply a constant value as instructed from DCC. For Type 2 RTUs the Generator shall indicate what happens to these analog outputs in the event of communications or power failure and upon restoration of communications and/or power.
Type 2 RTU – Mode A

The RTU shall be capable of logging analog values periodically. This period shall be configurable for each data point with a minimum resolution of 1 s. The DNO will inform the Generator of the data log interval during the SCADA installation process. These values will be logged and timestamped. Time synchronization will normally be performed via DNP3. The use of any other time sources shall be agreed between the DNO and the Generator.

B.7.3.4 Communication

Type 1 RTUs

The DNO is responsible for providing the communication link between the RTU and DCC.

Type 2 RTUs

The Generator shall indicate the number of communications ports available and the functions of each port for the RTU offered. At least two physical ports and one 2G/3G cellular modem shall be provided. One of the ports shall be able to utilise communication by the DNO’s Operational Telecommunications Network for Mode B operation. The cellular modem is required for primary communications for mode A operation. One of the ports shall be an Ethernet port providing a secondary IP connection option for mode A or mode B operation. Type 2 RTUs shall be able to operate in both A and B modes. Following a site signal strength survey performed by the DNO, the primary mode of operation will be stipulated during the application process. Changes in communications link availability on site may require a switch to a different operating mode. Should neither option be available, then another communication methodology shall be supplied by the Generator following agreements of its suitability with the DNO.

The Generator will be required to demonstrate that the RTU offered will operate satisfactorily while communicating with the SCADA System using DNP3 for mode A or IEC-60870-5-101 for mode B.

Type 2 RTU – Mode A

The DNO shall supply the appropriate SIM. The Generator shall supply the appropriate modem. The DNO shall provide necessary security credentials to connect to the DNO’s APN. The RTU shall use DNP3 protocol to communicate with DCC. The DNO DNP3 master station is part of an iHost SCADA platform provided by Nortech Management Ltd and they will provide technical requirements for iHost Compatible RTUs.

The Ethernet port is intended to provide flexibility for an alternative communication link following a future change in the availability of cellular communications. The DNO’s preferred method of communication between Type 2 RTUs and the SCADA System is using cellular communication. The Ethernet port shall only be required to communicate with the SCADA System if requested by the DNO.
Hardware Requirements:

- 2G Modem - GPRS/EDGE (900 MHz, 1800 MHz)
- 3G Modem - UMTS/HSDPA (900 MHz, 1900 MHz, 2100 MHz)
- RJ45 Ethernet Port (10/100 Mbps)

Type 2 RTU – Mode B

The **DNO** currently uses polled radio to provide communication back to the DCC. The communications protocol utilised by the radio modems is presently IEC60870-5-101 operating at a data rate of either 9600 or 19200 bits per second (bps) and is via a RS232 presentation. The **DNO** will supply the communication equipment from the RTU to the DCC. The **DNO** will confirm the data rate upon delivery of the communication equipment.

The RTU should also be capable of communicating using IEC 60870-5-104 protocol via the Ethernet port.

Hardware requirements are specified in section B.7.4 Equipment Practice and Specification.

B.7.4 Equipment Practice and Specification

The cabinet within which the RTU is housed should be suitable for an electrically noisy environment with a single earthing point terminal.

Type 2 RTUs

For mode B operation the **Generator** will be issued with some communication equipment. The cabinet for Type 2 RTUs shall be capable of accommodating the following:

B.7.4.1 Radio Specification

- Radio unit, aerial pole and antenna shall be provided by the **DNO**
- Humidity: 95% at 40°C
- Temperature Range: -30 to 60°C (full performance)
 - 40 to 70°C (operational)
- Weight: 1.6 Kilograms
- Case: Die-cast Aluminium.
- Dimensions
Width: 143mm (minimum)
Height: 57mm (minimum)
Depth: 184mm including antenna connector

Aluminium Aerial Pole. 6 m long x 50 mm with a 5 mm wall thickness. The antenna design and location will be recommended to the Generator following the site survey.

If required, planning permission for the antenna is the responsibility of the Generator.

Data Connection: 25 Pin D-type Female connector

Pin 2 – Radio IN (Accepts data from the RTU)
Pin 3 – Radio OUT (Outputs data to the RTU)
Pin 7 – Signal Ground

B.7.4.2 Primary Power

Shall be provided by the Generator.

Voltage: 13.8V nominal (10.5 to 16V DC)
TX Supply: 2.5 amps
RX Supply: 150mA (Operational)
25mA (Standby)

Power connector: 2 pin polarized locking connector
Fuse: 4 Amp Polyfuse Self-Resetting Internal (Remove primary power to reset)

Reverse Polarity Protection Diode will be required across the primary input.

B.7.4.3 Radio Cabinet

Shall be provided by the Generator. A cabinet with a minimum IP rating of IP55 is required to house the above radio equipment.
B.7.5 Type 1 RTU SCADA Signals

This section details the signalling requirements for sites with Type 1 RTUs. The signals listed in this section will be tested point to point from the Power Generating Facility’s terminal box to the DNO RTU and through to the DCC. The signals if hardwired ranged 4-20 mA should be simulated from the terminal box and if using a serial protocol tested as close to the transducers as possible.

Table B.7.1 – Analog Input Signals (to Control Centre) from Power Generating Facility – Type 1 RTU

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
<th>Range</th>
<th>Units</th>
<th>Scale Min</th>
<th>Scale Max</th>
<th>Display Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW24</td>
<td>The flow of Active Power at the Connection Point.</td>
<td>4 - 20 mA</td>
<td>TBC</td>
<td>MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVar24</td>
<td>The flow of Reactive Power at the Connection Point.</td>
<td>4 - 20 mA</td>
<td>TBC</td>
<td>MVar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kV Setpoint Cfmd</td>
<td>Confirmation of the HV voltage set point for Voltage Control mode operation.</td>
<td>4 - 20 mA</td>
<td>TBA</td>
<td>kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kV24</td>
<td>Indication of the HV line voltage.</td>
<td>4 - 20 mA</td>
<td>TBC</td>
<td>kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/F Setpoint Cfmd</td>
<td>Confirmation of the phase angle set point for Power Factor control mode operation.</td>
<td>4 - 20 mA</td>
<td>TBA</td>
<td>Degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Angle Measurement24</td>
<td>Measurement of the phase angle at the Connection Point.</td>
<td>4 - 20 mA</td>
<td>TBC</td>
<td>Degrees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23 These signals will report by exception within a dead band range of 1% - 10% determined by the DNO.

24 Provided by the DNO as part of the connection arrangements. Included for completeness. These indications shall come directly from the transducers.

25 A positive value indicates Export of Active Power from the Power Generating Facility to Distribution Network. A negative value indicates the Import of Active Power from the Distribution Network to the Power Generating Facility.

26 A positive value indicates Export of Reactive Power from the Power Generating Facility to the Distribution Network. A negative value indicates the Import of Reactive Power from the Distribution Network to the Power Generating Facility.

27 Scale to be agreed with the DNO.
Table B.7.2 - Analog Output Signals (from Control Centre) to **Power Generating Facility** – Type 1 RTU

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
<th>Range</th>
<th>Units</th>
<th>Scale Min</th>
<th>Scale Max</th>
<th>Display Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV Set-point</td>
<td>Analog output indicating the new set-point for voltage control mode.</td>
<td>4 - 20</td>
<td>mA</td>
<td>TBA^28</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td>Power Factor Set-point</td>
<td>Analog output indicating the new set-point for Power Factor control mode. Value is given as phase angle.</td>
<td>4 – 20</td>
<td>mA</td>
<td>TBA^28</td>
<td>Degrees</td>
<td></td>
</tr>
</tbody>
</table>

Table B.7.3 - Digital Input Signals (to Control Centre) from **Power Generating Facility** – Type 1 RTU

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
<th>Contact Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Factor control ON</td>
<td>Indication that Power Factor control mode has been selected</td>
<td>Double^29</td>
</tr>
<tr>
<td>Power Factor control OFF</td>
<td>Indication that Power Factor control mode is not currently selected</td>
<td>Double^29</td>
</tr>
<tr>
<td>Voltage Control ON</td>
<td>Indication that voltage control mode has been selected</td>
<td>Double^29</td>
</tr>
<tr>
<td>Voltage Control OFF</td>
<td>Indication that voltage control mode is not currently selected</td>
<td>Double^29</td>
</tr>
<tr>
<td>Voltage Auto Control^30</td>
<td>Alarm indication that the control mode has automatically changed to voltage control</td>
<td>Single</td>
</tr>
<tr>
<td>CB1 Open^‡</td>
<td>Indication that the DNO Circuit Breaker at the Connection Point is open</td>
<td>Double^31</td>
</tr>
<tr>
<td>CB1 Closed^‡</td>
<td>Indication that the DNO Circuit Breaker at the Connection Point is closed</td>
<td>Double^31</td>
</tr>
<tr>
<td>G99/NI Island Trip</td>
<td>Alarm indication that EREC G99/NI protection has operated</td>
<td>Single</td>
</tr>
</tbody>
</table>

^28 Scale to be agreed with the **DNO**

^29 **Power Factor** and voltage control indications shall be arranged as complementary bits of a double bit indication

^30 Automatic changeover to voltage control mode will occur if the voltage moves beyond the limits of a deadband agreed between the **DNO** and the generator

^‡Provided by the **DNO** as part of the connection arrangements. Included for completeness

^31 CB Open & Closed indications shall be arranged as complementary bits of a double bit indication
<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
<th>Contact Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dummy Circuit Breaker Open²</td>
<td>Indication that the DNO dummy circuit breaker is open</td>
<td>Double²³²</td>
</tr>
<tr>
<td>Dummy Circuit Breaker Closed³</td>
<td>Indication that the DNO dummy circuit breaker is closed</td>
<td></td>
</tr>
<tr>
<td>Grid Control Selected</td>
<td>The Power Generating Facility Controller will respond to remote controls from the DNO</td>
<td>Double</td>
</tr>
<tr>
<td>Local Control Selected</td>
<td>Indication that supervisory/remote control has been disabled. The Power Generating Facility Controller will not permit remote controls from the DNO</td>
<td>Single</td>
</tr>
<tr>
<td>Transducer Faulty</td>
<td>Indication that a primary input to the Power Generating Facility controller has been lost</td>
<td>Single</td>
</tr>
<tr>
<td>Grid Controller Faulty</td>
<td>Indication of a power or component failure of the Power Generating Facility controller</td>
<td>Single</td>
</tr>
<tr>
<td>AC Main Fail³³</td>
<td>Alarm indication that the mains power supply to the RTU has been lost and is running on battery backup</td>
<td>Single</td>
</tr>
<tr>
<td>Emergency Soft Stop ON</td>
<td>Confirmation that soft-stop has been requested. Apparent power output should reduce to zero.</td>
<td>Double</td>
</tr>
<tr>
<td>Emergency Soft Stop OFF</td>
<td>Confirmation that soft-stop has been removed. No restriction on apparent power output.</td>
<td></td>
</tr>
<tr>
<td>Emergency S.S. (Soft-Stop) Complete</td>
<td>Alarm Indication that the Power Generating Facility shutdown action has been completed and the apparent power output is zero.</td>
<td>Single</td>
</tr>
</tbody>
</table>

³² Dummy CB Open & Closed indications shall be arranged as complementary points of a double bit indication

³³ Provided by the DNO as part of the connection arrangements. Included for completeness
Table B.7.4 - Digital Output Signals (from Control Centre) to **Power Generating Facility** – Type 1 RTU

<table>
<thead>
<tr>
<th>Signal Description</th>
<th>Description</th>
<th>Permanent Signal</th>
<th>Pulse<sub>34</sub> Open Signal</th>
<th>Pulse<sub>34</sub> Close Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Control ON</td>
<td>Instruction to operate in voltage control mode</td>
<td>0V</td>
<td></td>
<td>TBA<sub>3</sub>V dc</td>
</tr>
<tr>
<td>Power Factor Control ON</td>
<td>Instruction to operate in Power Factor control mode</td>
<td>0V</td>
<td></td>
<td>TBA V dc</td>
</tr>
<tr>
<td>CB1 Close<sup>35</sup></td>
<td>Close the DNO Circuit Breaker at the Connection Point</td>
<td>0V</td>
<td>TBC V dc</td>
<td>TBA V dc</td>
</tr>
<tr>
<td>CB1 Open<sup>35</sup></td>
<td>Open the DNO Circuit Breaker at the Connection Point</td>
<td>0V</td>
<td>TBA V dc</td>
<td>TBA V dc</td>
</tr>
<tr>
<td>Close CB<sup>36</sup></td>
<td>Close the DNO Dummy Circuit Breaker</td>
<td>0V</td>
<td>TBA V dc</td>
<td>TBA V dc</td>
</tr>
<tr>
<td>Open CB<sup>36</sup></td>
<td>Open the DNO Dummy Circuit Breaker</td>
<td>0V</td>
<td>TBA V dc</td>
<td>TBA V dc</td>
</tr>
<tr>
<td>Emergency Soft Stop ON<sup>36</sup></td>
<td>Instruction to reduce Power Generating Facility apparent power output to zero</td>
<td>0V</td>
<td>TBA<sub>3</sub>V dc</td>
<td>TBA<sub>3</sub>V dc</td>
</tr>
<tr>
<td>Emergency Soft Stop OFF<sup>37</sup></td>
<td>Instruction removing restriction on Power Generating Facility apparent power output</td>
<td>0V</td>
<td>TBA<sub>3</sub>V dc</td>
<td>TBA<sub>3</sub>V dc</td>
</tr>
</tbody>
</table>

34 Pulse length will be configurable over the range 0.5 to 5.0 seconds. The pulse length will be specified by the DNO during the SCADA connection process.

35 Provided by the DNO as part of the connection arrangements. Included for completeness.

36 Generator shutdown allows the DNO to temporarily remove generation from a circuit. The Generator shall disconnect or ramp down their output by a method of their own choosing in a time frame agreed with the DNO. Once their shutdown action is complete they shall return a Generator shutdown sequence completed alarm indication. If the Generator is already in a zero output or disconnected state when the inhibit command is applied it shall remain in this state.

37 Removes restriction on Generator output and allows it to return to normal running conditions.
B.7.6 Type 2 RTU SCADA Signals

This section details signalling requirements for Power Generating Facilities with Type 2 RTUs.

Table B.7.5 – Analog Inputs (from Power Generating Facility) to Control Centre

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Description</th>
<th>Scale Min</th>
<th>Scale Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>kVar</td>
<td>The flow of Reactive Power at the Connection Point.</td>
<td>TBC</td>
<td>TBC</td>
<td>kVAr</td>
</tr>
<tr>
<td>1</td>
<td>kW</td>
<td>The flow of Active Power at the Connection Point.</td>
<td>TBC</td>
<td>TBC</td>
<td>kW</td>
</tr>
<tr>
<td>2</td>
<td>Power Factor</td>
<td>Power Factor at Connection Point</td>
<td>-1.00</td>
<td>1.00</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>Phase Angle Set-Point Confirmation</td>
<td>Confirmation of the phase angle set point for Power Factor control mode</td>
<td>-180</td>
<td>179</td>
<td>Degrees</td>
</tr>
<tr>
<td>4</td>
<td>Phase Angle ϕ_1</td>
<td>Measurement of the phase angle on L$_1$ at the Connection Point</td>
<td>-180</td>
<td>179</td>
<td>Degrees</td>
</tr>
<tr>
<td>5</td>
<td>Phase Angle ϕ_2</td>
<td>Measurement of the phase angle on L$_2$ at the Connection Point</td>
<td>-180</td>
<td>179</td>
<td>Degrees</td>
</tr>
<tr>
<td>6</td>
<td>Phase Angle ϕ_3</td>
<td>Measurement of the phase angle on L$_3$ at the Connection Point</td>
<td>-180</td>
<td>179</td>
<td>Degrees</td>
</tr>
<tr>
<td>7</td>
<td>RSSI38</td>
<td>Received Signal Strength Indication</td>
<td>TBC</td>
<td>TBC</td>
<td>TBC</td>
</tr>
<tr>
<td>8</td>
<td>V_{ab}</td>
<td>Indication of the line voltage measured between L$_1$ and L$_2$ at the Connection Point</td>
<td>0</td>
<td>1.2 PU</td>
<td>V</td>
</tr>
<tr>
<td>9</td>
<td>V_{bc}</td>
<td>Indication of the line voltage measured between L$_2$ and L$_3$ at the Connection Point</td>
<td>0</td>
<td>1.2 PU</td>
<td>V</td>
</tr>
<tr>
<td>10</td>
<td>V_{ca}</td>
<td>Indication of the line voltage measured between L$_3$ and L$_1$ at the Connection Point</td>
<td>0</td>
<td>1.2 PU</td>
<td>V</td>
</tr>
<tr>
<td>11</td>
<td>Voltage Set-Point Confirmation</td>
<td>Confirmation of the voltage set point for Voltage Control mode</td>
<td>0</td>
<td>1.2 PU</td>
<td>V</td>
</tr>
<tr>
<td>12</td>
<td>HV Current39</td>
<td>Measurement of the phase current on L2 at the Connection Point40</td>
<td>TBC</td>
<td>TBC</td>
<td>A</td>
</tr>
</tbody>
</table>

38 This shall be either the measured physical value in dBm or a reference value in Arbitrary Strength Units. For RTUs reporting in ASU, the Generator shall provide documentation detailing how it can be mapped to an equivalent value in dBm.

39 Sites with a nominal voltage above 1000V at the Connection Point shall provide a current measurement.
Table B.7.6 - Analog Outputs (from Control Centre) to Power Generating Facility

<table>
<thead>
<tr>
<th>No.</th>
<th>Signal</th>
<th>Description</th>
<th>Scale Min</th>
<th>Scale Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Phase Angle Set-Point Instruction</td>
<td>Analog output indicating the new set-point for Power Factor control mode</td>
<td>-18</td>
<td>12</td>
<td>Degrees</td>
</tr>
<tr>
<td>1</td>
<td>Voltage Set-Point Instruction</td>
<td>Analog output indicating the new set-point for Power Factor control mode</td>
<td>0.96 PU</td>
<td>1.04 PU</td>
<td>TBC</td>
</tr>
</tbody>
</table>

Table B.7.7 - Digital Outputs (from Control Centre) to Power Generating Facility

<table>
<thead>
<tr>
<th>No.</th>
<th>Signal</th>
<th>Description</th>
<th>False/0/10</th>
<th>True/1/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Control Mode</td>
<td>Instruction from DNO to select Power Factor control or voltage control mode</td>
<td>Power Factor Control</td>
<td>Voltage Control</td>
</tr>
<tr>
<td>1</td>
<td>Dummy CB</td>
<td>Instruction from the DNO to open or close the Dummy Circuit Breaker</td>
<td>Open</td>
<td>Close</td>
</tr>
<tr>
<td>2</td>
<td>Emergency Soft-Stop</td>
<td>Instruction from the DNO to shut down all Generating Units or to operate as normal</td>
<td>Soft Stop On (Shutdown)</td>
<td>Soft Stop Reset (Generate as Normal)</td>
</tr>
</tbody>
</table>

Table B.7.8 - Digital Inputs (from Power Generating Facility) to Control Centre

<table>
<thead>
<tr>
<th>No.</th>
<th>Signal</th>
<th>Description</th>
<th>False/0/10</th>
<th>True/1/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RTU Control Switch</td>
<td>Indication that supervisory/remote control has been disabled</td>
<td>OFF - Local Control</td>
<td>ON - Remote Control</td>
</tr>
<tr>
<td>1</td>
<td>Control Mode</td>
<td>Indication that Power Factor or voltage control mode has been selected</td>
<td>Voltage Control</td>
<td>Power Factor Control</td>
</tr>
<tr>
<td>2</td>
<td>Customer G99/NI CB</td>
<td>Indication of the status of the CB associated with the Power Generating Facility G99/NI Protection</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>3</td>
<td>Dummy CB</td>
<td>Indication of the Status of the Dummy CB.</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>4</td>
<td>Emergency Voltage Control</td>
<td>Alarm indication that the Power Generating Facility has now automatically switched to Emergency Voltage Control.</td>
<td>Reset</td>
<td>Operated</td>
</tr>
</tbody>
</table>

40 A positive value indicates the flow of current from the Power Generating Facility to the Distribution Network. A negative value indicates the flow of current from the Distribution Network to the Power Generating Facility.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Alarm Indication</th>
<th>Action</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>G99/NI Protection Trip</td>
<td>Alarm indication that a G99/NI trip event has occurred</td>
<td>Reset</td>
<td>Operated</td>
</tr>
<tr>
<td>6</td>
<td>NVD Protection Trip</td>
<td>Alarm indication that Neutral Voltage displacement has occurred</td>
<td>Reset</td>
<td>Operated</td>
</tr>
<tr>
<td>7</td>
<td>Phase Angle Set-Point out of Range</td>
<td>Alarm indication that the Power Generating Facility has been</td>
<td>Reset</td>
<td>Operated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>instructed to reach a PF outside of G99/NI reactive capability requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Power Factor Indication</td>
<td>Indication to complement AI-2. Provides additional clarity</td>
<td>Capacitive</td>
<td>Inductive</td>
</tr>
<tr>
<td>9</td>
<td>Reverse Power Flow Protection Trip</td>
<td>Alarm indication that reverse power flow protection has operated.</td>
<td>Reset</td>
<td>Operated</td>
</tr>
<tr>
<td>10</td>
<td>AC Mains Fail</td>
<td>Alarm indication that the power supply to the RTU has failed and it is</td>
<td>Reset</td>
<td>Operated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>now running on battery backup.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RTU Local Comms Fault</td>
<td>Alarm indication that the communication link between the **Power Generating</td>
<td>Comms OK</td>
<td>Operated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Facility** controller and the RTU has failed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Soft Stop Sequence Complete</td>
<td>Alarm Indication that the Generator shutdown action has been completed and</td>
<td>Soft Stop</td>
<td>Reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the apparent power output is zero.</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Emergency Soft Stop</td>
<td>Confirmation that soft-stop has been requested/reset by DNO</td>
<td>Soft-Stop</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>On (Shutdown)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Voltage Set-Point Out of Range</td>
<td>Alarm indication that the Power Generating Facility has been</td>
<td>Reset</td>
<td>Operated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>instructed to reach a voltage outside of statutory limits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

41 Only applies for Power Generating Facility where the requirement for reverse power flow protection has been specified in the Connection Agreement.
B.8 Complex Site Signals

The signals listed in these tables are only intended as a template. The signal list may be extended or reduced to accommodate the different numbers of Generating Unit technologies or circuit breakers associated with EREC G99/NI protection on a site by site basis. A full signal list specific to each Power Generating Facility will be issued by the DNO during the SCADA commissioning process.

Table B.8.1 - Complex Site Analog Inputs

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Description</th>
<th>Scale Min</th>
<th>Scale Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>kVAR [Tech 'x']</td>
<td>The gross output(^{42}) of Reactive Power from technology ‘x’ Generating Units</td>
<td>TBA</td>
<td>TBA</td>
<td>kVAR</td>
</tr>
<tr>
<td>14</td>
<td>kW [Tech ‘x’]</td>
<td>The gross output of Active Power from technology ‘x’. Generating Units</td>
<td>0</td>
<td>TBA</td>
<td>kW</td>
</tr>
<tr>
<td>15</td>
<td>kVAR [Tech ‘y’]</td>
<td>The gross output of Reactive Power from technology ‘y’ Generating Units</td>
<td>TBA</td>
<td>TBA</td>
<td>kVAR</td>
</tr>
<tr>
<td>16</td>
<td>kW [Tech ‘y’]</td>
<td>The gross output of Active Power from technology ‘y’. Generating Units</td>
<td>0</td>
<td>TBA</td>
<td>kW</td>
</tr>
</tbody>
</table>

Table B.8.2 - Complex Site Digital Inputs

<table>
<thead>
<tr>
<th>No.</th>
<th>Signal</th>
<th>Description</th>
<th>False/0/10</th>
<th>True/1/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Customer G99/NI CB [No. 2]</td>
<td>Indication of the status of the CB associated with the Power Generating Facility G99/NI Protection</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>14</td>
<td>Customer G99/NI CB [No. 3]</td>
<td>Indication of the status of the CB associated with the Power Generating Facility G99/NI Protection</td>
<td>Open</td>
<td>Closed</td>
</tr>
</tbody>
</table>

\(^{42}\) The measured value from the terminals of the Generating Unit. Measured values should be summated for Power Generating Facilities with multiple Generating Units with the same technology.
B.9 Emergency Voltage Control Example

DNO RTU
Or DCC

Select Power Factor Control Instruction from DNO

SCADA Interface

Power Station

Power Station operates in PF Control

Confirm PF Control to DNO

Store last instructed Control Mode & Setpoint

Voltage rises to 1.05 PU

Activate Emergency Voltage Control

Confirm Voltage Control to DNO

Confirm Emergency Voltage Control alarm to DNO

PF Control -12°
Voltage drops to 1.04 PU

Revert to last instructed control mode

Confirm PF Control to NIE Networks RTU

Reset Emergency Voltage Control Alarm

Some Time Later

Voltage drops to 0.95 PU

Activate Emergency Voltage Control

Confirm Voltage Control to NIE Networks RTU

Confirm Emergency Voltage Control alarm to NIE Networks RTU
New Power Factor Control Setpoint

Select Power Factor Control

Confirm PF Control Setpoint to DNO

Confirm PF Control to DNO

Store last instructed Control Mode & Setpoint

Power Station operates in PF Control

Voltage rises to 0.96 PU

Remain in PF Control

Manual Override from DNO Control Engineer

DNO RTU or DCC

SCADA Interface

Power Station

PF Control +4°
B.10 Controllability Test

Form B10 Controllability Test Results

Generator:	
Test date:	
Registered Capacity (MW):	
Circuit:	
Substation:	

Power Factor Testing: The following Power Factors should be sent to the machine to test controllability. After completion of the test the Power Generating Module should be left on Power Factor control at +12 deg.

<table>
<thead>
<tr>
<th>Power Factor</th>
<th>SCADA Scale Degrees</th>
<th>Actual Power Factor</th>
<th>Voltage Recorded</th>
<th>kW Output</th>
<th>kVar Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.95</td>
<td>-18</td>
<td></td>
<td>V2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.98</td>
<td>-12</td>
<td></td>
<td>V1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+0.98</td>
<td>+12</td>
<td></td>
<td>V3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage Control Testing: The recorded voltages V3, V2 & V1 should be sent to the machine to test controllability. If during the tests it is anticipated voltage at the Connection Point will exceed +/-6% the test should be suspended and a mail sent to the Network Generation Manager.

<table>
<thead>
<tr>
<th>Control Mode</th>
<th>Voltage Set Point</th>
<th>Voltage Recorded</th>
<th>kW Output</th>
<th>kVar Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage control</td>
<td>=V3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>voltage control</td>
<td>=V2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>voltage control</td>
<td>=V1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Declaration: Testing completed by

Name (print)
Signature
Annex C – Type C and Type D

C.1 Application

The application for connection of a Type C or Type D Power Generating Module should be made to the DNO using the Standard Application Form on the DNO website.
C.2 Power Generating Module Document Type C and Type D

Form C2-1 Power Generating Module Document for Type C and Type D Power Generating Modules

Compliance Statement

This document shall be completed by the Generator

Note: For phased installations reference to PGM in thus form should be read as reference to Generating Units, and the project phase noted.

<table>
<thead>
<tr>
<th>Power Generating Module (PGM)</th>
<th>Distribution Network Owner (DNO):</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM Name:</td>
<td>DNO Name: ABC electricity distribution</td>
</tr>
<tr>
<td>Compliance Contact (name/tel/email):</td>
<td>Compliance Contact (name/tel/email):</td>
</tr>
</tbody>
</table>

Key to Submission Stage

A – Application: Submission of the Standard Application Form.

For Type C: IS – Initial Submission: The programme of initial compliance document submission to be agreed between the Generator and the DNO as soon as possible after acceptance of a Connection Offer. The Power Generating Module Document shall be completed as agreed in accordance with paragraph 18.2.2 at least 28 days before the Generator synchronising the Power Generating Module for the first time.

E – Energisation: Documentation required prior to Energisation.

For Type D: ION – Interim Operational Notification: The programme of initial compliance document submission to be agreed between the Generator and the DNO as soon as possible after acceptance of a Connection Offer. The Power Generating Module Document shall be completed as agreed in accordance with paragraph 19.3.2 at least 28 days before the Generator synchronising the Power Generating Module for the first time.

FONS – Final Operational Notification Submission: The Generator shall submit post energisation verification test documents to obtain Final Operational Notification from the DNO.

Key to evidence requested

<table>
<thead>
<tr>
<th>Key to evidence requested</th>
<th>Key to Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>S - Indicates that DNO would expect to see the results of a Simulation study</td>
<td>Y = Yes (Compliant),</td>
</tr>
<tr>
<td>P - Generating Unit design data</td>
<td>O = Outstanding (outstanding submission)</td>
</tr>
<tr>
<td>MI - Manufacturer Information, generic data or test results as</td>
<td>UR = Unresolved issue</td>
</tr>
<tr>
<td>Issue</td>
<td>Date of Issue</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>Issue #</td>
<td>DD/MM/YY</td>
</tr>
<tr>
<td>Final Issue Prior to FON</td>
<td></td>
</tr>
</tbody>
</table>

Details of Power Generating Module

- **Connection Voltage**
- **Registered Capacity**
- **Manufacturer**
 - Reference
- **Technology Type**
<table>
<thead>
<tr>
<th>G99/NI Reference</th>
<th>Compliance Requirement of the Power Generating Module</th>
<th>Submission Stage</th>
<th>Evidence Requested (and / or)</th>
<th>Compliance Y, O, UR, N,</th>
<th>Generator’s Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2.1, 18.2.3, 18.7.1</td>
<td>Confirmation that a completed Standard Application Form has been submitted to the DNO</td>
<td>A, IS, ION</td>
<td>P, MI, D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Power Quality – Voltage fluctuations and Flicker: The installation shall be designed in accordance with EREC P28</td>
<td>IS</td>
<td>MI, D, TV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14.3</td>
<td>Site Responsibility Schedule</td>
<td>E</td>
<td>D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Power Quality – Voltage fluctuations and Flicker: The installation shall be designed in accordance with EREC P28</td>
<td>IS, ION</td>
<td>MI, D, TV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Power Quality – Harmonics: The installation shall be designed in accordance with EREC G5</td>
<td>IS, ION</td>
<td>MI, D, TV</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
| 13.5 | **Reactive Power capability**
Confirm compliance with Section 13.5 by carrying out simulation study in accordance with C.7.3 and by submission of a report | IS, ION | S, MI, TV |
| 13.4 | **Voltage Control and Reactive Power Stability**
Confirm compliance with Section 13.4 by carrying out simulation study in accordance with C.7.4 and by submission of a report | IS, ION | S, MI, TV |
| 13.2.4 | **Limited Frequency Sensitive Mode – Over frequency and Frequency Sensitive Mode**
Confirm the compliance with 13.2.4 by carrying out simulation study in accordance with C.7.6 and by submission of a report | IS, ION | S, MI, TV |
| 13.2.5 | **Limited Frequency Sensitive Mode – Under frequency**
Confirm the compliance with 13.2.5 by carrying out simulation study in accordance with C.7.7 and by submission of a report. | IS, ION | S, MI, TV |
<p>| 13.1.3 | Confirm the Active Power set point can be adjusted in accordance with | IS, ION | MI, TV |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Requirement</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>Fault Ride Through
Confirm the compliance with 13.3 by carrying out simulation study in accordance with C.7.5 and by submission of a report</td>
<td>IS, ION</td>
</tr>
<tr>
<td>18.2.3 (e)</td>
<td>Confirm a detailed schedule of tests and test procedures have been provided</td>
<td>IS, ION</td>
</tr>
<tr>
<td>Section 10 and Form C2-2</td>
<td>Interface Protection:
- Over and under voltage protection
- Over and Under Frequency protection
- Loss of mains protection
Other protection:
Details of any special protection, eg Pole Slipping or islanding
As an alternative to demonstrating protection compliance with Section 10 using Manufacturers' Information or type test reports, site tests can be undertaken at the time of commissioning the Power Generating Module</td>
<td>IS, ION</td>
</tr>
<tr>
<td>C.7.8</td>
<td>Model validation
 Demonstration of the frequency control or</td>
<td>ION</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Requirement</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>13.4</td>
<td>Open & Short Circuit Saturation Characteristics
Confirm the performance requirements of a continuously acting voltage control system compliant with 13.4 by testing in accordance with C.8.3</td>
<td>ION</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Excitation System On-Load Tests
Confirm the operation of the Excitation System on load is compliant with paragraph 13.4.3 and by testing in accordance with C.8.4</td>
<td>ION</td>
</tr>
<tr>
<td>13.5</td>
<td>Reactive Capability Test
Confirm the Reactive Power capability of the Synchronous Power Generating Module to meet the requirements of Section 13.5 by testing in accordance with C.8.5</td>
<td>ION</td>
</tr>
<tr>
<td>13.2</td>
<td>Frequency Response Tests
Confirm the Synchronous Power Generating Module meets the requirements of 13.2 by testing in accordance with C.8.6</td>
<td>ION</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Output Power with falling frequency
Confirm the Synchronous Power Generating Module meets the</td>
<td>ION</td>
</tr>
</tbody>
</table>
requirements of 13.2.3 by testing in accordance with C.8.7

| | 10.3.3 | **Automatic reconnection**
Confirm by testing that the reconnection sequence starts after a minimum delay of 60 s for restoration of voltage and frequency in accordance with paragraph 10.3.3 | ION | T, MI, TV |
| C.3 | Installation and Commissioning Form C3 completed with signed acceptance from the DNO representative | ION | D | | |
Additional Compliance and Commissioning test requirements for Power Generating Modules

Form C2-2: Site Compliance and Commissioning test requirements for Type C and Type D Power Generating Modules

This form should be completed if site compliance tests are being undertaken for some or all of the *Interface Protection* where it is not *Type Tested* and for other compliance tests that are being undertaken on site.

Generator Details:

- **Generator** (name)

Installation details:

- Address
- Post Code
- Date of commissioning

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliance by provision of Manufacturers’ Information or type test reports. Reference number should be detailed and Manufacturers’ Information attached.</th>
<th>Compliance by commissioning tests Tick if true and complete relevant sections of form below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over and under voltage protection HV – calibration test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and under voltage protection HV – stability test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and Under Frequency protection – calibration test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over and Under Frequency protection - stability test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of mains protection – calibration test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of mains protection – stability test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring functional tests: If required by para 15.2.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Over and Under Voltage Protection HV.

Where the **Connection Point** is at HV the **Generator** shall demonstrate compliance with this EREC G99/NI in respect of Over and Under Voltage Protection by provision of **Manufacturers’ Information**, type test reports or by undertaking the following tests on site.

Tests referenced to 110 V ph-ph VT output.

Calibration and Accuracy Tests

| Phase | Setting | Time Delay | Pickup Voltage | Relay Operating Time
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>measured value ± 2 V</td>
</tr>
<tr>
<td>Over Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 - L2</td>
<td>1.1 pu</td>
<td>0.5 s</td>
<td>119.35</td>
<td>122.65</td>
</tr>
<tr>
<td>L2 - L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Under Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 - L2</td>
<td>0.85 pu</td>
<td>3.0 s</td>
<td>91.85</td>
<td>95.15</td>
</tr>
<tr>
<td>L2 - L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 2 Under Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 - L2</td>
<td>0.6 pu</td>
<td>2.0s</td>
<td>64.35</td>
<td>67.65</td>
</tr>
<tr>
<td>L2 - L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measured Value - Pickup Voltage: Nominal voltages applied to the protection and slowly increase/decrease in steps no greater than 0.5% of the voltage setting. Pickup voltage within ±1.65 V of setting value.

Measured Value - Relay Operating Time: Stepping test voltage from nominal value to 2 V above/below the measured pickup voltage. Relay operating time to be no shorter than lower limit and no greater than upper limit.

Over and Under Voltage Protection Tests HV

referenced to 110 V ph-ph VT output
Stability Tests.

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Setting</th>
<th>Time Delay</th>
<th>est Condition (3-Phase Value)</th>
<th>est Voltage All phase ph-ph</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>------------</td>
<td>< OV</td>
<td>119 V</td>
<td>5.00 s</td>
<td></td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Over Voltage</td>
<td>121 V</td>
<td>1.0 s</td>
<td>> OV</td>
<td>122.3 V</td>
<td>1.95 s</td>
<td></td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>------------</td>
<td>> UV Stage 1</td>
<td>126.3 V</td>
<td>5.00 s</td>
<td></td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Under Voltage Stage 1</td>
<td>93.5 V</td>
<td>2.5 s</td>
<td>< UV Stage 1</td>
<td>90 V</td>
<td>2.95 s</td>
<td></td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Under Voltage Stage 2</td>
<td>66.0 V</td>
<td>2.5 s</td>
<td>< UV Stage 2</td>
<td>86 V</td>
<td>1.95 s</td>
<td></td>
<td>Pass/Fail</td>
</tr>
</tbody>
</table>

Additional Comments / Observations:

Over and Under Frequency Protection.

The **Generator** shall demonstrate compliance with this EREC G99/NI in respect of Over and Under Frequency Protection by provision of **Manufacturers' Information**, type test reports or by undertaking the following tests on site.

Calibration and Accuracy Tests.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Time Delay</th>
<th>Pickup Frequency</th>
<th>Relay Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Limit</td>
<td>Measured Value</td>
<td>Upper Limit</td>
</tr>
<tr>
<td>Over Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.00 Hz</td>
<td>1.0 s</td>
<td>51.90</td>
<td>52.10</td>
</tr>
<tr>
<td>Under Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.00 Hz</td>
<td>0.5 s</td>
<td>47.90</td>
<td>48.10</td>
</tr>
</tbody>
</table>
Stability Tests

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Setting</th>
<th>Time Delay</th>
<th>Test Condition</th>
<th>Test Frequency</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>----------</td>
<td>< OF</td>
<td>51.8 Hz</td>
<td>120 s</td>
<td></td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Over Frequency</td>
<td>52.0 Hz</td>
<td>1.0 s</td>
<td>> OF</td>
<td>52.2 Hz</td>
<td>0.95 s</td>
<td></td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>--------</td>
<td>----------</td>
<td>> UF</td>
<td>48.2 Hz</td>
<td>30 s</td>
<td></td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Under Frequency</td>
<td>48.0 Hz</td>
<td>0.5 s</td>
<td>< UF</td>
<td>47.2 Hz</td>
<td>0.45 s</td>
<td></td>
<td>Pass/Fail</td>
</tr>
</tbody>
</table>

Over frequency test - Frequency shall be stepped from 51.8 Hz to the test frequency and held for the test duration and then stepped back to 51.8 Hz.

Under frequency test - Frequency shall be stepped from 47.7 Hz to the test frequency and held for the test duration and then stepped back to 47.7 Hz.

Additional Comments / Observations:

Details of Loss of Mains Protection

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Manufacturer’s type</th>
<th>Date of Installation</th>
<th>Settings</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Loss-of-Mains (LOM) Protection Tests.

The **Generator** shall demonstrate compliance with this EREC G99/NI in respect of LOM Protection by either providing the **DNO** with appropriate **Manufacturers’ Information**, type test reports or by undertaking the following tests on site.

Calibration and Accuracy Tests.

Ramp in range 49.5 – 50.5 Hz

<table>
<thead>
<tr>
<th>Setting = 1.0 Hz⁻¹, Time Delay 500 ms</th>
<th>Pickup (±0.05 Hz⁻¹)</th>
<th>Relay Operating Time RoCoF = ±0.10 Hz⁻¹ above setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Limit</td>
<td>Measured Value</td>
<td>Upper Limit</td>
</tr>
<tr>
<td>Increasing Frequency</td>
<td>0.95</td>
<td>1.05</td>
</tr>
<tr>
<td>Reducing Frequency</td>
<td>0.95</td>
<td>1.05</td>
</tr>
</tbody>
</table>

5 Measured Value – Pickup RoCoF: Apply test voltage with frequency of 49.5 Hz to be applied to the protection and ramp up to 50.5 Hz at a RoCoF of 0.1 Hz⁻¹, repeating the test incrementing the RoCoF at steps of 0.05 Hz⁻¹ until protection operates. Repeat for reducing frequency (50.5 Hz to 49.5 Hz). Pickup RoCoF value within ±0.05 Hz⁻¹ of setting value.

6 Measured Value – Relay Operating Time: Test increasing / reducing frequency at a rate of 0.1 Hz⁻¹ above setting value. Relay should not operate within 500 ms.

Stability Tests.

Ramp in range 49.5 - 50.5 Hz

<table>
<thead>
<tr>
<th>Test Condition</th>
<th>Test frequency ramp</th>
<th>Test Duration</th>
<th>Confirm No Trip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Normal band</td>
<td>< RoCoF setting (increasing f)</td>
<td>+0.95 Hz⁻¹</td>
<td>2.1 s</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Inside Normal band</td>
<td>< RoCoF setting (reducing f)</td>
<td>-0.95 Hz⁻¹</td>
<td>2.1 s</td>
<td>Pass/Fail</td>
</tr>
</tbody>
</table>

Ramp as shown

| Inside Normal band | > RoCoF setting (increasing f) | +1.20 Hz⁻¹ (ramp between 49.80 and 50.34 Hz) | 0.45 s | Pass/Fail |
| Inside Normal band | > RoCoF setting (reducing f) | 1.20 Hz⁻¹ (ramp between 50.30 and 49.76 Hz) | 0.45 s | Pass/Fail |
LoM Protection - Stability test.

<table>
<thead>
<tr>
<th></th>
<th>Start Frequency</th>
<th>Change</th>
<th>Confirm no trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Vector Shift</td>
<td>49.5 Hz</td>
<td>+50 degrees</td>
<td></td>
</tr>
<tr>
<td>Negative Vector Shift</td>
<td>50.5 Hz</td>
<td>- 50 degrees</td>
<td></td>
</tr>
</tbody>
</table>

Wiring functional tests:

If required by para 15.2.1, confirm that wiring functional tests have been carried out in accordance with the instructions below.

Yes/ NA

Where components of a Power Generating Module are separately Type Tested and assembled into a Power Generating Module, if the connections are made via loose wiring, rather than specifically designed error-proof connectors, then it will be necessary to prove the functionality of the components that rely on the connections that have been made by the loose wiring.

As an example, consider a Type Tested alternator complete with its control systems etc. It needs to be connected to a Type Tested Interface Protection unit. In this case there are only three voltage connections to make, and one tripping circuit. The on-site checks need to confirm that the Interface Protection sees the correct three phase voltages and that the tripping circuit is operative. It is not necessary to inject the Interface Protection etc to prove this. Simple functional checks are all that are required.

Test schedule:

With Generating Unit running and energised, confirm L1, L2, L3 voltages on Generating Unit and on Interface Protection.

Disconnect one phase of the control wiring at the Generating Unit. Confirm received voltages at the Interface Protection have one phase missing.

Repeat for other phases.

Confirm a trip on the Interface Protection trips the Generating Unit.

Insert here any additional tests which have been carried out (as identified as being required by Form C2-1).
C.3 Installation and Commissioning Confirmation Form

Form C3 Installation and Commissioning Confirmation Form for Type C and Type D PGMs

Please complete and provide this document for every **Power Generating Facility**.

Part 1 should be completed for the **Power Generating Facility**.

Part 2 should be completed for each of the **Power Generating Modules** being commissioned. Where the installation is phased the form should be completed on a **Generating Unit** basis as each part of the installation is completed in accordance with EREC G99/NI paragraph 15.3.3. For phased installations reference to the **PGM** in this form should be read as reference to **Generating Units**.

Form C3 Part 1

<table>
<thead>
<tr>
<th>To DNO</th>
<th>ABC electricity distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ99 9AA</td>
<td>abced@wxyz.com</td>
</tr>
<tr>
<td>99 West St, Imaginary Town,</td>
<td></td>
</tr>
</tbody>
</table>

Installer or Generator Details

<table>
<thead>
<tr>
<th>Installer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accreditation/Qualification</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Post Code</td>
</tr>
<tr>
<td>Contact person</td>
</tr>
<tr>
<td>Telephone Number</td>
</tr>
<tr>
<td>E-mail address</td>
</tr>
</tbody>
</table>

Installation Details

<table>
<thead>
<tr>
<th>Site Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Post Code</td>
</tr>
<tr>
<td>Site Telephone Number</td>
</tr>
<tr>
<td>MPRN(s)</td>
</tr>
<tr>
<td>Location within Generator's Installation</td>
</tr>
</tbody>
</table>
Location of Lockable Isolation Switch

<table>
<thead>
<tr>
<th>Manufacturer / Reference</th>
<th>Date of Installation</th>
<th>Technology Type</th>
<th>Manufacturers Reference Number (Product id on ENA database) and or Equipment Certificate references as applicable</th>
<th>Power Generating Module Registered Capacity in kW</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commissioning Checks

<table>
<thead>
<tr>
<th>Description</th>
<th>Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator’s Installation satisfies the requirements of BS7671 (IET Wiring Regulations).</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Suitable lockable points of isolation have been provided between the PGMs and the rest of the Generator’s Installation.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Labels have been installed at all points of isolation in accordance with EREC G99/NI.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Interlocking that prevents the PGM being connected in parallel with the DNO’s Distribution Network (without synchronising) is in place and operates correctly.</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>
Form C3 Part 2

| Power Generating Module reference or name | |

Information to be enclosed

<table>
<thead>
<tr>
<th>Description</th>
<th>Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final copy of circuit diagram</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Schedule of protection settings (may be included in circuit diagram)</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

Commissioning Checks

<table>
<thead>
<tr>
<th>Description</th>
<th>Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Interface Protection settings have been checked and comply with EREC G99/NI.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully synchronises with the DNO's Distribution Network without causing significant voltage disturbance.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully runs in parallel with the DNO's Distribution Network without tripping and without causing significant voltage disturbances.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM successfully disconnects without causing a significant voltage disturbance, when it is shut down.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Interface Protection operates and disconnects the PGMs quickly (eg within 1 s) when a suitably rated switch, located between the PGMs and the DNO's incoming connection, is opened.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>The PGM remains disconnected for at least 60 s after switch is reclosed.</td>
<td>Yes / No*</td>
</tr>
<tr>
<td>Loss of tripping and auxiliary supplies. Where applicable, loss of supplies to tripping and protection relays results in either PGM lockout or an alarm to a 24 hr manned control centre.</td>
<td>Yes / No*</td>
</tr>
</tbody>
</table>

*Circle as appropriate. If “No” is selected the **Power Generating Facility** is deemed to have failed the commissioning tests and the **Power Generating Module** shall not be put in service.

Additional Comments / Observations:
Declaration – to be completed by Generator or Generators Appointed Technical Representative.

I declare that for the **Type C or Type D** Power Generating Module within the scope of this EREC G99/NI, and the installation:

1. The **Power Generating Module Document** Form C2-1 is complete.
2. The commissioning checks detailed in Form C2-2 have been successfully completed*.
3. The commissioning checks detailed in this Form C3 have been successfully completed.

delete **Type C** or **Type D** as applicable.

$ delete if **Type D** at Interim Operational Notification Stage and the **Power Generating Module Document** Form C2-1 is not complete. In this case, this form will be resubmitted at FON stage without this deletion.

*delete if not applicable ie if the **Interface Protection** and ride through capabilities are **Type Tested**.

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature:</td>
<td>Date:</td>
</tr>
<tr>
<td>Company:</td>
<td></td>
</tr>
<tr>
<td>Position:</td>
<td></td>
</tr>
</tbody>
</table>

Declaration – to be completed by DNO Witnessing Representative

I confirm that I have witnessed:
1. The commissioning checks detailed in Form C2-2 *;
2. The commissioning checks detailed in this Form C3 and that the results are an accurate record of the checks.

*delete if not applicable ie if the **Interface Protection** and ride through capabilities are **Type Tested**

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Signature:</td>
<td>Date:</td>
</tr>
</tbody>
</table>
C.4 Not used

C.5 Not used
C.6 Functional Specification for Dynamic System Monitoring, Fault Recording and Power Quality Monitoring Equipment for Type C and Type D Power Generating Modules

C.6.1 Purpose and Scope

This Annex describes the functional requirements for dynamic system monitoring, fault recording and power quality monitoring that Generators need to provide in accordance with the requirements of EREC G99/NI and the Distribution Code. It is expected that the functionality will be housed in a single recording device (RD), although other options are not discounted.

The requirements of this Annex apply to all Power Generating Facilities containing any Type C or Type D Power Generating Modules.

C.6.2 Functional Requirements

C.6.2.1 Inputs and Outputs

The RD shall have analogue inputs:

(a) Three phase voltage
(b) Open delta/neutral-earth voltage
(c) Three phase current
(d) Neutral current.

The RD shall have digital inputs to record protection, control and plant status.

The number of inputs shall be sufficient to record these quantities at relevant points on the Generator’s Installation as agreed with the DNO.

The RD shall have digital outputs:

(a) RD healthy
(b) RD triggered.

C.6.2.2 Measured and Derived Quantities

At each agreed relevant point on the Generator’s Installation dynamic system monitoring, fault recording and power quality monitoring shall be provided.

C.6.2.2.1 Dynamic System Monitoring

Measured and derived quantities for dynamic system monitoring shall comprise:

(a) 3 phase voltage quantities, including positive and negative phase sequence values.
(b) 3 phase current quantities, including positive and negative phase sequence values.
(c) **Active Power** and **Reactive Power** flows

(d) Frequency.

C.6.2.2.2 Fault Recording

Measured and derived quantities for fault recording shall comprise:

- a) Voltage
- b) Current
- c) Protection, control and plant status.

C.6.2.2.3 Power Quality Monitoring

Measured and derived quantities for power quality recording shall comprise:

- a) Frequency
- b) Voltage magnitude
- c) Short-term flicker
- d) Long-term flicker
- e) Voltage dips, swells and interruptions
- f) Voltage unbalance
- g) Voltage THD and harmonics
- h) Voltage inter-harmonics
- i) Rapid voltage change
- j) Voltage change
- k) Current magnitude
- l) Current THD and harmonics
- m) Current inter-harmonics
- n) Current unbalance.

Measurement intervals shall be in accordance with IEC 62586-1 Table 6.

Power quality monitoring shall be compliant with BS EN 61000-4-30 Class A. The harmonic and inter-harmonic orders shall correspond with the those as specified in EREC G5, BS EN 50160 and BS EN 61000-4-7.
C.6.2.3 **Accuracy and Resolution**

The accuracy and resolution requirements for dynamic system monitoring shall be as specified in Table C.6.1 below.

Table C.6.1 Accuracy and resolution requirements for dynamic system monitoring

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Measurement Range</th>
<th>Accuracy ±% of nominal</th>
<th>Resolution ±% of nominal</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS voltage</td>
<td>0 – 1.5 V_n</td>
<td>0.1</td>
<td>0.01</td>
<td>Crest factor ≤1.5</td>
</tr>
<tr>
<td>Voltage phase sequence components</td>
<td>0.8 V_n – 1.5 V_n</td>
<td>0.1</td>
<td>0.01</td>
<td>Crest factor ≤1.5</td>
</tr>
<tr>
<td>Current phase sequence components</td>
<td>0 – 5.0 I_n</td>
<td>0.5</td>
<td>0.01</td>
<td>Crest factor ≤3.0</td>
</tr>
<tr>
<td>Active Power</td>
<td>0 – 5 P_n</td>
<td>0.5</td>
<td>0.01</td>
<td>For all Power Factors between 0.5 and 1.0</td>
</tr>
<tr>
<td>Reactive Power</td>
<td>0 – 5 RP_n</td>
<td>0.5</td>
<td>0.01</td>
<td>For all Power Factors between 0.87 and 1.0</td>
</tr>
<tr>
<td>Frequency</td>
<td>42.5 Hz – 57.5 Hz</td>
<td>0.005</td>
<td>0.001</td>
<td>20%< V_r<150%</td>
</tr>
</tbody>
</table>

The accuracy requirements for fault recording and power quality monitoring shall be in accordance with BS EN 61000-4-30 Class A; the resolution requirements shall support the required accuracy in accordance with IEC 62586-1.

C.6.2.4 **Time Keeping**

Inputs and all the derived data from inputs shall be time tagged to a resolution of 1 μs. The RD internal clock shall be synchronised with Universal Time (UTC) via GPS satellite or other functionally similar method. It should be possible to set a local time offset.

C.6.2.5 **Triggering**

C.6.2.5.1 **Dynamic System Event Triggering**

The dynamic system monitor shall have configurable dynamic system event triggers as follows:

a) Frequency (half-cycle)
b) Voltage (half cycle RMS and waveform)
c) Current (half-cycle RMS and waveform)
d) Positive sequence voltage (half cycle RMS)

e) Negative sequence voltage (half cycle RMS)

f) **Active Power** (half-cycle RMS)

g) **Reactive Power** (half-cycle RMS)

h) **Active Power** oscillation

i) **Power Factor** (half-cycle)

j) Digital inputs.

Dynamic system event half-cycle triggering shall be as detailed in Table C.6.2 below as a minimum requirement.

Table C.6.2 Dynamic system event half-cycle triggering

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Over (+)/Under (-) Deviation (%)</th>
<th>Step (%)</th>
<th>Phase step (°)</th>
<th>Rate of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
</tr>
<tr>
<td>Current</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive sequence voltage</td>
<td>● (+/-)</td>
<td></td>
<td>● (+/-)</td>
<td></td>
</tr>
<tr>
<td>Negative sequence voltage</td>
<td>● (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Power</td>
<td>● (+/-)</td>
<td></td>
<td>● (+/-)</td>
<td></td>
</tr>
<tr>
<td>Reactive Power</td>
<td>● (+)</td>
<td></td>
<td>● (+/-)</td>
<td></td>
</tr>
<tr>
<td>Power Factor</td>
<td>● (+/-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital inputs</td>
<td></td>
<td></td>
<td>rising edge/falling edge</td>
<td></td>
</tr>
</tbody>
</table>

Dynamic system event waveform triggering shall be as detailed in Table C.6.3 below as a minimum requirement.

Table C.6.3 Dynamic system event half-cycle triggering

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Over (+)/Under (-) Deviation (%)</th>
<th>Step (%)</th>
<th>Phase step (°)</th>
<th>Period</th>
<th>Number of oscillations in time window</th>
</tr>
</thead>
</table>
The above to have an accuracy of better than 2% and all analogue inputs shall trigger for disturbance durations shorter than 10 ms.

Multiple triggering of fault recordings shall be prevented by a hysteresis band around the trigger set point.

The type and magnitude of triggering shall be independently selectable on all analogue input channels and on all calculated quantities.

Digital triggering shall be initialised by either the opening of a normally closed contact or the closing of a normally open contact. The required trigger mode shall be independently selectable on all channels. It shall be possible to deselect any channel so that it does not trigger the substation monitor. The Manufacturer shall specify the voltage tolerances for a logic ‘1’ and a logic ‘0’.

C.6.2.5.1.1 Pre-event Recording

For dynamic system monitoring the pre-event time for half-cycle recording shall be DNO configurable in the range of 20 ms to 1000 ms; for waveform recording the pre-event time shall be DNO configurable in the range of 20 ms to 200 ms.

C.6.2.5.1.2 Post-event Recording

For dynamic system monitoring the post-event time for half-cycle recording shall be DNO configurable in the range of 20 ms to 60 s; for waveform recording the post-event time shall be DNO configurable in the range of 20 ms to 2000 ms.

C.6.2.5.2 Fault Event Triggering

The fault recorder shall have configurable dynamic system event triggers as follows:

a) Voltage (half cycle RMS and waveform)
b) Current (half-cycle RMS and waveform)
c) Digital inputs.

Fault recorder half-cycle triggering shall be as be as detailed in Table C.6.4 below as a minimum requirement.
Table C.6.4 Fault recorder half-cycle triggering

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Over (+)/Under (-) Deviation (%)</th>
<th>Step (%)</th>
<th>Phase step (°)</th>
<th>Rate of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
</tr>
<tr>
<td>Current</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital inputs</td>
<td></td>
<td>rising edge/falling edge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fault recorder waveform triggering shall be as detailed in Table C.6.5 below as a minimum requirement.

Table C.6.5 Fault recorder waveform triggering

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Over (+)/Under (-) Deviation (%)</th>
<th>Step (%)</th>
<th>Phase step (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage waveform</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td>●</td>
</tr>
<tr>
<td>Current waveform</td>
<td>● (+/-)</td>
<td>● (+/-)</td>
<td>●</td>
</tr>
<tr>
<td>Digital inputs</td>
<td></td>
<td>rising edge/falling edge</td>
<td></td>
</tr>
</tbody>
</table>

C.6.2.5.2.1 Pre event Recording:

For fault recording the pre-event time for half-cycle recording shall be **DNO** configurable in the range of 20 ms to 120 s; for waveform recording the pre-event time shall be **DNO** configurable in the range of 20 ms to 200 ms.

C.6.2.5.2.2 Post event Recording

For fault recording the post-event time for half-cycle recording shall be **DNO** configurable in the range of 20 ms to 120 s; for waveform recording the post-event time shall be **DNO** configurable in the range of 20 ms to 2000 ms.

C.6.2.5.3 Power Quality Event Triggering

The power quality monitor shall have configurable power quality event triggers as follows:

a) Frequency (10 s)
b) Voltage magnitude (10 minute)
c) Short-term flicker (10 minute)
d) Long-term flicker (2 hour)
e) Voltage dip
f) Voltage swell

g) Voltage interruption

h) Voltage unbalance (10 minute)

i) Voltage THD and harmonics (10 minute)

j) Voltage inter-harmonics (10 minute)

k) Rapid voltage change

l) Voltage change.

Power quality event triggering shall be as detailed in Table C.6.6 below as a minimum.

Table C.6.6 Power quality event triggering

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Over (+) / Under (-) Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>● (+/-)</td>
</tr>
<tr>
<td>Voltage magnitude</td>
<td>● (+/-)</td>
</tr>
<tr>
<td>Short-term flicker</td>
<td>● (+)</td>
</tr>
<tr>
<td>Long-term flicker</td>
<td>● (+)</td>
</tr>
<tr>
<td>Voltage dip</td>
<td>● (-)</td>
</tr>
<tr>
<td>Voltage swell</td>
<td>● (+)</td>
</tr>
<tr>
<td>Voltage interruption</td>
<td>● (-)</td>
</tr>
<tr>
<td>Voltage unbalance</td>
<td>● (+)</td>
</tr>
<tr>
<td>Voltage THD and harmonics</td>
<td>● (+)</td>
</tr>
<tr>
<td>Voltage inter-harmonics</td>
<td>● (+)</td>
</tr>
<tr>
<td>Rapid voltage change</td>
<td>● (+/-)</td>
</tr>
<tr>
<td>Voltage change</td>
<td>● (+/-)</td>
</tr>
</tbody>
</table>
C.6.2.6 Analysis and Reporting

C.6.2.6.1 Dynamic System Records

Analysis software shall be provided to enable selection and plotting of each of the following dynamic system parameters against time:

a) Frequency (half-cycle min, max and mean)
b) Voltage (half cycle RMS min, max and mean)
c) Current (half-cycle RMS min, max and mean)
d) Positive sequence voltage (half cycle RMS)
e) Negative sequence voltage (half cycle RMS min, max and mean)
f) **Active Power** (half-cycle RMS min, max and mean)
g) **Reactive Power** (half-cycle RMS min, max and mean)
h) **Power Factor** (half-cycle).

The facility to graphically zoom in and out shall be provided.

Provision shall be made for display of:

a) Dynamic system triggered event summary information in tabular form
b) Dynamic system triggered event detail graphically
c) Dynamic system triggered event occurrence versus time.

C.6.2.6.2 Fault Records

Provision shall be made for display of:

a) Fault recorder triggered event summary information in tabular form
b) Fault recorder triggered event detail graphically
c) Fault recorder triggered event occurrence versus time.

C.6.2.6.3 Power Quality Records

Analysis software shall be provided to enable selection and plotting of each of the following power quality parameters against time:

a) Frequency (10 s min, max and mean)
b) Voltage magnitude (10 minute min, max and mean)
c) Short-term flicker (10 minute)
d) Long-term flicker (2 hour)
e) Voltage unbalance (10 minute)
f) Voltage THD and harmonics (10 minute)

g) Voltage inter-harmonics (10 minute).

The facility to graphically zoom in and out shall be provided.

Provision shall be made for display of:

a) Power quality triggered event summary information in tabular form

b) Voltage dips, swells and interruptions in residual voltage versus time graphical form and in the tabular form specified in BS EN 50160

c) Power quality triggered events graphically

d) Fault recorder triggered event occurrence versus time.

C.6.2.7 Storage and communication

All data will be continuously stored.

Non-volatile static memory will be used to provide storage for a minimum of 28 days of data, prior to overwriting on a first in first out basis.

The source data files shall have an IEC 60255-24 COMTRADE and CSV format to allow transfer to other computer spread sheet programs or protection relay secondary test sets etc.

The Generator will specify what further communication options and protocols will be provided.

If the DNO requires the data to be transferred routinely or on demand to the DNO’s SCADA, the DNO will provide further specific information on protocols and connection requirements.

C.6.2.8 Environmental

The RD environmental performance shall be in accordance with IEC 62586-1 product coding PQI-A-FI2-H.

EMC emissions shall be in accordance with IEC 62586-1.

The minimum intrusion protection (IP) requirements shall be in accordance with IEC 62586-1.

C.6.2.9 Additional Requirements

The following requirements specified in IEC 62586-1 shall apply:

a) Start-up requirements

b) Marking and operating instructions

c) Functional, environmental and safety type tests

d) EMC tests
e) Climatic tests
f) Mechanical tests
g) Functional and uncertainty tests
h) Routine tests
i) Declarations
j) Re-calibration and re-verification.

C.6.3 Relevant Standards

The following standards are likely to be relevant. The Generator will quote all the standards the RD is compliant with.

EN 61000-4-3: Electromagnetic compatibility (EMC). Testing and measurement techniques. Radiated, radio-frequency, electromagnetic field immunity test.

IEC 60255-22-1: 'Electrical Relays - Electrical disturbance tests for measuring relays and protection equipment. 1MHz burst disturbance tests'.

BS EN 50160: Voltage characteristics of electricity supplied by public electricity networks.

BS EN 55011: Industrial, scientific and medial equipment. Radio frequency disturbance characteristics. Limits and methods of measurement.

BS EN 60255-24: 'Electrical Relays. Common Format for Transient Data Exchange (COMTRADE) for Power Systems.'
BS EN 60255-27 Measuring relays and protection equipment. Product safety requirements.

ENA ER G5/4 Planning Levels for Harmonic Voltage Distortion and the Connection of Non-Linear Equipment to Transmission Systems and Distribution Networks in the United Kingdom

IEC 62586-1 Power Quality Measurement in power systems – Part 1: Power quality instruments

C.6.4 Calibration and Testing

It is the Generator's responsibility to ensure that the RD remains functioning and accurate. The DNO has the right to request demonstration of accuracy and functionality.

Correct operation of the RD will normally be demonstrated to the DNO when the facility is commissioned.
C.7 Simulation Studies for Type C and Type D Power Generating Modules

C.7.1 Scope

C.7.1.1 This Annex sets out the simulation studies required to be submitted to the DNO to demonstrate compliance with EREC G99/NI unless otherwise agreed with the DNO. The studies specified in this Annex will normally be sufficient to demonstrate compliance. However, the DNO may agree an alternative set of studies proposed by the Generator provided the DNO deems the alternative set of studies sufficient to demonstrate compliance with this EREC G99/NI and the Connection Agreement.

C.7.1.2 The Generator shall submit simulation studies in the form of a report to demonstrate compliance. In all cases the simulation studies shall utilise models applicable to the Synchronous Power Generating Module or Power Park Module with proposed or actual parameter settings. Reports should be submitted in English with all diagrams and graphs plotted clearly with legible axes and scaling provided to ensure any variations in plotted values is clear. In all cases the simulation studies shall be presented over a sufficient time period to demonstrate compliance with all applicable requirements.

C.7.1.3 The DNO may permit relaxation from the requirement in paragraph C.7.2 to paragraph C.7.8 where Manufacturers' Information for the Power Generating Module has been provided which details the characteristics from appropriate simulations on a representative installation with the same equipment and settings and the performance of the Power Generating Module can, in the DNO’s opinion, reasonably represent that of the installed Power Generating Module.

C.7.1.4 For Type C and Type D Power Generating Modules the relevant Manufacturers' Information shall be supplied in the Power Generating Module Document or Planning Code as applicable.

C.7.2 Power System Stabiliser Tuning

C.7.2.1 In the case of a Synchronous Power Generating Module with a Power System Stabiliser the Power System Stabiliser tuning simulation study report required by the Grid Code C.1.2.5.6 shall be submitted in accordance with Grid Code EPC.A.3.2.1.

C.7.2.2 In the case of Power Park Modules with a Power System Stabiliser at the Connection Point the Power System Stabiliser tuning simulation study report required by the Grid Code C.2.2.4.1 shall contain be submitted in accordance with Grid Code ECP.A.3.2.2.

C.7.3 Reactive Capability across the Voltage Range

C.7.3.1 The Generator shall supply simulation studies to demonstrate the capability to meet Section 13.5 by submission of a report containing:

(i) a load flow simulation study result to demonstrate the maximum lagging Reactive Power capability of the Synchronous Power Generating Module or Power Park Module at Registered Capacity when the Connection Point voltage is at 106% of nominal.

(ii) a load flow simulation study result to demonstrate the maximum leading Reactive Power capability of the Synchronous Power Generating Module.
or Power Park Module at Registered Capacity when the Connection Point voltage is at 94% of nominal.

(iii) a load flow simulation study result to demonstrate the maximum lagging Reactive Power capability of the Synchronous Power Generating Module or Power Park Module at the Minimum Stable Operating Level when the Connection Point voltage is at 106% of nominal.

(iv) a load flow simulation study result to demonstrate the maximum leading Reactive Power capability of the Synchronous Power Generating Module or Power Park Module at the Minimum Stable Operating Level when the Connection Point voltage is at 94% of nominal.

C.7.3.2 In the case of a Synchronous Power Generating Module the terminal voltage in the simulation should be the nominal voltage for the machine.

C.7.3.3 In the case of a Power Park Module where the load flow simulation studies show that the individual Generating Units deviate from nominal voltage to meet the Reactive Power requirements then evidence shall be provided from factory (eg Manufactures Information) or site testing that the Generating Unit is capable of operating continuously at the operating points determined in the load flow simulation studies.

C.7.4 Voltage Control and Reactive Power Stability

C.7.4.1 This section applies to Power Park Modules to demonstrate the voltage control capability.

C.7.4.2 In the case of a Power Generating Facility containing Power Park Modules the Generator shall provide a report to demonstrate the dynamic capability and control stability of the Power Park Modules. The report shall contain:

(i) a dynamic time series simulation study result of a sufficiently large negative step in system voltage to cause a change in Reactive Power from zero to the maximum lagging value at Registered Capacity.

(ii) a dynamic time series simulation study result of a sufficiently large positive step in system voltage to cause a change in Reactive Power from zero to the maximum leading value at Registered Capacity.

(iii) a dynamic time series simulation study result to demonstrate control stability at the lagging Reactive Power limit by application of a -2% voltage step while operating within 5% of the lagging Reactive Power limit.

(iv) a dynamic time series simulation study result to demonstrate control stability at the leading Reactive Power limit by application of a +2% voltage step while operating within 5% of the leading Reactive Power limit.

C.7.4.3 All the above studies should be completed with a network operating at the voltage applicable for zero Reactive Power transfer at the Connection Point unless stated otherwise. The fault level at the Connection Point should be set at the minimum level as agreed with the DNO.

C.7.4.4 The DNO may permit relaxation from the requirements of C.7.4.2(i) and (ii) for voltage control if the Power Park Modules are comprised of Generating Units in respect of which the Generator has in its submissions to the DNO referenced an
appropriate Manufacturers’ Information which is acceptable to the DNO for voltage control.

C.7.4.5 In addition the DNO may permit a further relaxation from the requirements of C.7.4.2(iii) and (iv) if the Generator has in its submissions to the DNO referenced appropriate Manufacturers’ Information for a Power Park Module mathematical model for voltage control acceptable to the DNO.

C.7.5 Fault Ride Through and Fast Fault Current Injection

C.7.5.1 This section applies to Power Generating Modules to demonstrate the modules Fault Ride Through capability.

C.7.5.2 The Generator shall supply time series simulation study results to demonstrate the capability of Synchronous Power Generating Modules and Power Park Modules to meet paragraph 13.3 and paragraph 13.6 by submission of a report containing:

(i) a time series simulation study of a 140 ms three phase short circuit fault with a retained voltage as detailed in Table C.7.1 applied at the Connection Point of the Power Generating Module.

(ii) a time series simulation study of 140 ms unbalanced short circuit faults with a retained voltage as detailed in Table C.7.1 on the faulted phase(s) applied at the Connection Point of the Power Generating Module. The unbalanced faults to be simulated are:

1. a phase to phase fault
2. a two phase to earth fault
3. a single phase to earth fault.

<table>
<thead>
<tr>
<th>Power Generating Module</th>
<th>Retained Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Power Generating Module</td>
<td></td>
</tr>
<tr>
<td>Type C or Type D with Connection Point voltage <110 kV</td>
<td>10%</td>
</tr>
<tr>
<td>Type D with Connection Point voltage >110 kV</td>
<td>0%</td>
</tr>
<tr>
<td>Power Park Module</td>
<td></td>
</tr>
<tr>
<td>Type C or Type D with Connection Point voltage <110 kV</td>
<td>10%</td>
</tr>
<tr>
<td>Type D with Connection Point voltage >110 kV</td>
<td>0%</td>
</tr>
</tbody>
</table>

C.7.5.3 The simulation study should be completed with the Power Generating Module operating at full Active Power and maximum leading Reactive Power and the fault level at the Connection Point at minimum as notified by the DNO.
C.7.5.4 The simulation study will show acceptable performance providing compliance with the requirements of paragraph 13.3.1.11 (e) are demonstrated.

C.7.5.5 In the case of Power Generating Modules comprised of Generating Units in respect of which the Generator's reference to Manufacturers' Information has been accepted by the DNO for Fault Ride Through, C.7.5.2 will not apply provided:

(i) the Generator demonstrates by load flow simulation study result that the faults and voltage dips at either side of the Generating Unit transformer corresponding to the required faults and voltage dips in C.7.5.2 applied at the Connection Point are less than those included in the Manufacturers' Information, or;

(ii) the same or greater percentage faults and voltage dips in C.7.5.2 have been applied at either side of the Generating Unit transformer in the Manufacturers' Information.

C.7.6 Limited Frequency Sensitive Mode – Over Frequency (LFSM-O)

C.7.6.1 This section applies to Power Generating Modules to demonstrate the capability to modulate Active Power at high frequency as required by Section 13.2.4.

C.7.6.2 The simulation study should comprise of a Power Generating Module connected to the Total System with a local load shown as "X" in Figure C.7.1. The load "X" is in addition to any auxiliary load of the Power Generating Facility connected directly to the Power Generating Module and represents a small portion of the system to which the Power Generating Module is attached. The value of "X" should be the minimum for which the Power Generating Module can control the power island frequency to less than 52 Hz. Where transient excursions above 52 Hz occur the Generator should ensure that the duration above 52 Hz is less than any high frequency protection system applied to the Power Generating Module.

C.7.6.3 For Power Park Modules consisting of units connected wholly by power electronic devices an additional Synchronous Power Generating Module (G2) may be connected as indicated in Figure C.7.2. This additional Synchronous Power Generating Module should have an inertia constant of 3.5 MWs/MVA, be initially operating at rated power output and unity Power Factor. The mechanical power of the Synchronous Power Generating Module (G2) should remain constant throughout the simulation.

C.7.6.4 At the start of the simulation study the Power Generating Module will be operating maximum Active Power output. The Power Generating Module will then be islanded from the Total System but still supplying load "X" by the opening of a breaker, which is not the Power Generating Module or connection circuit breaker (the governor should therefore, not receive any signals that the breaker has opened other than the reduction in load and subsequent increase in speed). A schematic arrangement of the simulation study is illustrated by Figure C.7.1.
Generator Under Test

Registered Capacity

Auxiliary Load

Local Load X

Breaker Closed (see note 1)

Aggregated All Island System
3 GW

Notes:
1. The simulation begins with the generator connected to the total system.
2. The generator is islanded by system breakers.
3. The frequency may transiently above 52Hz in responding to the disconnection of demand provided the duration of any excursion beyond 52Hz is less than the high frequency protection trip time for the generator.

Figure C.7.1 – Diagram of Load Rejection Study

Non-Synchronous Generator

Load 1 = Non-Synchronous Generator Output + Non-Synchronous Generator DMOL

Synchronous Generator

Load 2 = Synch Generator Output + Non-Synchronous Generator DMOL

Figure C.7.2 – Addition of G2 if applicable

C.7.6.5 Simulation studies shall be performed in Limited Frequency Sensitive Mode (LFSM) and Frequency Sensitive Mode (FSM). The simulation study results should indicate Active Power and frequency.

C.7.6.6 To allow validation of the model used to simulate load rejection in accordance with paragraph 13.2.4 a further simulation study is required to represent the largest positive frequency injection step or fast ramp (BC1 and BC3 of Figure C.8.1) that will be applied as a test as described in C.7.8 and C.8.6.

C.7.7 Limited Frequency Sensitive Mode – Under Frequency (LFSM-U)

C.7.7.1 This section applies to Synchronous Power Generating Modules and Power Park Modules to demonstrate the module’s capability to modulate Active Power at low frequency.

C.7.7.2 To demonstrate the LFSM-U low frequency control when operating in Limited Frequency Sensitive Mode the Generator shall submit a simulation study
representing the response of the **Power Generating Module** operating at 80% of **Registered Capacity**. The simulation study event shall be equivalent to:

(i) a sufficiently large reduction in the measured system frequency ramped over 10 s to cause an increase in **Active Power** output to the **Registered Capacity** followed by

(ii) 60 s of steady state with the measured system frequency depressed to the same level as in C.7.7.2 (i) as illustrated in Figure C.7.3 below.

(iii) then increase of the measured system frequency ramped over 10 s to cause a reduction in **Active Power** output back to the original **Active Power** level followed by at least 60 s of steady output.

![Frequency vs Time Diagram](image)

Figure C.7.3 LFSM-U step response simulation

C.7.8 Voltage and Frequency Controller Model Verification and Validation

C.7.8.1 The **Generator** shall provide simulation studies to verify that the proposed **Controller** models supplied to the **DNO** under the Planning Code are fit for purpose. These simulation study results shall be provided in the timescales stated in the Planning Code.

C.7.8.2 To demonstrate the frequency control or governor/load controller/plant model the **Generator** shall submit a simulation study representing the response of the **Synchronous Power Generating Module** or **Power Park Module** operating at 80% of **Registered Capacity**. The simulation study event shall be equivalent to:

(i) a ramped reduction in the measured system frequency of 0.5Hz in 10 s followed by

(ii) 20 s of steady state with the measured system frequency depressed by 0.5Hz followed by

(iii) a ramped increase in measured system frequency of 0.3Hz over 30 s followed by

(iv) 60 s of steady state with the measured system frequency depressed by 0.2Hz as illustrated in Figure C.7.4 below.
The simulation study shall show Active Power output (MW) and the equivalent of frequency injected.

C.7.8.3 To demonstrate the Excitation System model the Generator shall submit simulation studies representing the response of the Synchronous Power Generating Module as follows:

(i) operating open circuit at rated terminal voltage and subjected to a 10% step increase in terminal voltage reference from 90% to 100%.

(ii) operating at Registered Capacity, nominal terminal voltage and unity Power Factor subjected to a 2% step increase in the voltage reference. Where a Power System Stabiliser is included within the Excitation System this shall be in service.

The simulation study shall show the Synchronous Power Generating Module terminal voltage, field voltage, Active Power, Reactive Power and Power System Stabiliser output signal as appropriate.

C.7.8.4 To demonstrate the Voltage Controller model the shall submit a simulation study representing the response of the Power Park Module operating at Registered Capacity and unity Power Factor at the Connection Point to a 2% step increase in the voltage reference. The simulation study shall show the terminal voltage, Active Power, Reactive Power and Power System Stabiliser output signal as appropriate.

C.7.8.5 To validate that the excitation and voltage control models submitted under the Planning Code are a reasonable representation of the dynamic behaviour of the Synchronous Power Generating Module or Power Park Module as built, the Generator shall repeat the simulation studies outlined above but using the operating conditions of the equivalent tests. The simulation study results shall be displayed overlaid on the actual test results.

C.7.8.6 For Synchronous Power Generating Modules to validate that the governor/load controller/plant or frequency control models submitted under the Planning Code is a reasonable representation of the dynamic behaviour of the Synchronous Power Generating Module as built, the Generator shall repeat the simulation studies outlined above but using the operating conditions of the equivalent tests. The simulation study results shall be displayed overlaid on the actual test results.
C.8 Compliance Testing of Type C and Type D Synchronous Power Generating Modules

C.8.1 Scope

C.8.1.1 This Annex sets out the tests contained therein to demonstrate compliance with the relevant clauses of this EREC G99/NI.

C.8.1.2 The tests specified in this Annex will normally be sufficient to demonstrate compliance however the DNO may:

(i) agree an alternative set of tests provided the DNO deems the alternative set of tests sufficient to demonstrate compliance with this EREC G99/NI and the Connection Agreement; and/or

(ii) require additional or alternative tests if information supplied to the DNO during the compliance process suggests that the tests in this Annex will not fully demonstrate compliance with the relevant section of the EREC G99/NI or the Connection Agreement.

(iii) Agree a reduced set of tests for subsequent Synchronous Power Generating Module following successful completion of the first Synchronous Power Generating Module tests in the case of a Power Generating Facility comprised of two or more Synchronous Power Generating Modules which the DNO reasonably considers to be identical.

If:

(a) the tests performed pursuant to C.8.1.2(iii) in respect of subsequent Synchronous Power Generating Modules do not replicate the full tests for the first Synchronous Power Generating Module, or

(b) any of the tests performed pursuant to C.8.1.2(iii) do not fully demonstrate compliance with the relevant aspects of EREC G99/NI, the Connection Agreement, or an any other contractual agreement with the DNO if applicable;

then notwithstanding the provisions above, the full testing requirements set out in this Annex will be applied.

C.8.1.3 The Generator is responsible for carrying out the tests set out in and in accordance with this Annex and the Generator retains the responsibility for the safety of personnel and plant during the test. The DNO will witness all of the tests outlined or agreed in relation to this Annex unless the DNO decides and notifies the Generator otherwise. Reactive Capability tests may be witnessed by the DNO remotely from the DNO control centre. For all on site DNO witnessed tests the Generator should ensure suitable representatives from the Generator and Manufacturer (if appropriate) are available on site for the entire testing period.

C.8.1.4 Full Synchronous Power Generating Module testing is to be completed as defined in C.8.2 through to C.8.7.

C.8.1.5 The DNO may permit relaxation from the requirement C.8.2 to C.8.7 where Manufacturers' Information for the Synchronous Power Generating Module has been provided which details the characteristics from tests on a representative machine with the same equipment and settings and the performance of the Synchronous Power Generating Module can, in the DNO’s opinion, reasonably
represent that of the installed **Synchronous Power Generating Module** at that site. For **Type C** and **Type D Power Generating Modules** the relevant **Manufacturers’ Information** shall be supplied in the **Power Generating Module Document** or the Planning Code as applicable.

C.8.2 Excitation System Open Circuit Step Response Tests

C.8.2.1 The open circuit step response of the **Excitation System** will be tested by applying a voltage step change from 90% to 100% of the nominal **Synchronous Power Generating Module** terminal voltage, with the **Synchronous Power Generating Module** on open circuit and at rated speed.

C.8.2.2 The test shall be carried out prior to synchronisation. This is not witnessed by the **DNO** unless specifically requested by the **DNO**. Where the **DNO** is not witnessing the tests, the **Generator** shall supply the recordings of the following signals to the **DNO** in an electronic spreadsheet format:

- \(V_t \) - Synchronous **Generating Unit** terminal voltage
- \(E_{fd} \) - Synchronous **Generating Unit** field voltage or main **Exciter** field voltage
- \(I_{fd} \) - Synchronous **Generating Unit** field current (where possible)

Step injection signal

C.8.2.3 Results shall be legible, identifiable by labelling, and shall have appropriate scaling.

C.8.3 Open & Short Circuit Saturation Characteristics

C.8.3.1 The test shall normally be carried out prior to synchronisation. **Manufacturers’ Information** may be used where appropriate may be used if agreed by the **DNO**.

C.8.3.2 This is not witnessed by the **DNO**. Graphical and tabular representations of the results in an electronic spreadsheet format showing per unit open circuit terminal voltage and short circuit current versus per unit field current shall be submitted to the **DNO**.

C.8.3.3 Results shall be legible, identifiable by labelling, and shall have appropriate scaling.

C.8.4 Excitation System On-Load Tests

C.8.4.1 The time domain performance of the **Excitation System** shall be tested by application of voltage step changes corresponding to 1% and 2% of the nominal terminal voltage.

C.8.4.2 Where a **Power System Stabiliser** is present the tests should be carried out in accordance with the **Grid Code ECP.A.5.4.2**.

C.8.4.3 Under-excitation Limiter Performance Test

C.8.4.3.1 Initially the performance of the **Under-excitation Limiter** should be checked by moving the limit line close to the operating point of the **Generating Unit** when operating close to unity **Power Factor**. The operating point of the **Generating Unit** is then stepped into the limit by applying a 2% decrease in **Automatic Voltage Regulator** Setpoint Voltage.
The final performance of the Under-excitation Limiter shall be demonstrated by testing its response to a step change corresponding to a 2% decrease in Automatic Voltage Regulator Setpoint Voltage when the Generating Unit is operating just off the limit line, at the designed setting as indicated on the Generator Performance Chart [P-Q Capability Diagram] submitted to the DNO under the Distribution Code, Planning Code.

Where possible the Under-excitation Limiter should also be tested by operating the tap-changer when the Generating Unit is operating just off the limit line, as set up.

The Under-excitation Limiter will normally be tested at low Active Power output (Minimum Stable Operating Level) and at maximum Active Power output (Registered Capacity).

The following typical procedure is provided to assist Generators in drawing up their own site specific procedures for the DNO witnessed Under-excitation Limiter Tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Injection</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generating Unit running at Registered Capacity and unity Power Factor. Under-excitation limit temporarily moved close to the operating point of the Generating Unit.</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | • PSS on (if applicable).
• Inject -2% voltage step into AVR Voltage Setpoint and hold at least for 10 s until stabilised
• Remove step returning AVR Voltage Setpoint to nominal and hold for at least 10 s | |
| | Under-excitation limit moved to normal position. Generating Unit running at Registered Capacity and at leading Reactive Power close to Under-excitation limit. | |
| 2 | • PSS on (if applicable).
• Inject -2% voltage step into AVR Voltage Setpoint and hold at least for 10 s until stabilised
• Remove step returning AVR Voltage Setpoint to nominal and hold for at least 10 s | |

C.8.4.4 Over-excitation Limiter Performance Test

The performance of the Over-excitation Limiter, where it exists, shall be demonstrated by testing its response to a step increase in the Automatic Voltage Regulator Setpoint Voltage that results in operation of the Over-excitation Limiter. Prior to application of the step the Generating Unit shall be generating Registered Capacity and operating within its continuous Reactive Power capability. The size of the step will be determined by the minimum value necessary to operate the Over-excitation Limiter and will be agreed by the DNO and the Generator. The resulting operation beyond the Over-excitation Limit
shall be controlled by the **Over-excitation Limiter** without the operation of any protection that could trip the **Power Generating Module**. The step shall be removed immediately on completion of the test.

C.8.4.2 If the **Over-excitation Limiter** has multiple levels to account for heating effects, an explanation of this functionality will be necessary and if appropriate, a description of how this can be tested.

C.8.4.3 The following typical procedure is provided to assist **Generators** in drawing up their own site specific procedures for the **DNO witnessed Under-excitation Limiter Tests**.

<table>
<thead>
<tr>
<th>Test</th>
<th>Injection</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generating Unit running at Registered Capacity and maximum lagging Reactive Power.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over-excitation Limit temporarily set close to this operating point. PSS on (if applicable).</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>• Inject positive voltage step into AVR voltage setpoint and hold
• Wait till Over-excitation Limiter operates after sufficient time delay to bring back the excitation back to the limit.
• Remove step returning AVR voltage setpoint to nominal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over-excitation Limit restored to its normal operating value. PSS on (if applicable).</td>
<td></td>
</tr>
</tbody>
</table>

C.8.5 **Reactive Capability**

C.8.5.1 The **Reactive Power** capability on each **Synchronous Power Generating Module** will normally be demonstrated by:

(a) operation of the **Synchronous Power Generating Module** at maximum lagging **Reactive Power** and **Registered Capacity** for 1 hour.

(b) operation of the **Synchronous Power Generating Module** at maximum leading **Reactive Power** and **Registered Capacity** for 1 hour.

(c) operation of the **Synchronous Power Generating Module** at maximum lagging **Reactive Power** and **Minimum Stable Operating Level** for 1 hour.

(d) operation of the **Synchronous Power Generating Module** at maximum leading **Reactive Power** and **Minimum Stable Operating Level** for 1 hour.

(e) operation of the **Synchronous Power Generating Module** at maximum lagging **Reactive Power** and a power output between **Registered Capacity** and **Minimum Stable Operating Level**.
(f) operation of the Synchronous Power Generating Module at maximum leading Reactive Power and a power output between Registered Capacity and Minimum Stable Operating Level.

C.8.5.2 Where Distribution Network considerations restrict the Synchronous Power Generating Module Reactive Power output then the maximum leading and lagging capability will be demonstrated without breaching the DNO limits.

C.8.5.3 The test procedure, time and date will be agreed with the DNO and will be to the instruction of the DNO control centre and shall be monitored and recorded at both the DNO control centre and by the Generator.

C.8.5.4 Where the Generator is recording the voltage, Active Power and Reactive Power at the Connection Point the voltage, Active Power and Reactive Power at the Synchronous Power Generating Module terminals may also be included. The results shall be supplied in an electronic spreadsheet format. Where applicable the Synchronous Power Generating Module transformer tap changer position should be noted throughout the test period.

C.8.6 Governor and Load Controller Response Performance

C.8.6.1 The governor and load controller response performance will be tested by injecting simulated frequency deviations into the governor and load controller systems. Such simulated frequency deviation signals shall be injected simultaneously at both speed governor and load controller setpoints. For CCGT Modules, simultaneous injection into all gas turbines, steam turbine governors and module controllers is required.

C.8.6.2 Where a CCGT Module or Synchronous Power Generating Module is capable of operating on alternative fuels, tests will be required to demonstrate performance when operating on each fuel. The DNO may agree a reduction from the tests listed in C.8.6.3 for demonstrating performance on the alternative fuel. This includes the case where a main fuel is supplemented by bio-fuel.

C.8.6.3 Full Frequency Response Testing Schedule Witnessed by the DNO

The tests are to be conducted at a number of different Module Load Points (MLP) based on fractions of the maximum export level (MEL).

The MEL is a series of MW figures and associated times, making up a profile of the maximum level at which the Power Generating Module may be exporting at the Connection Point.

The load points are conducted as shown below unless agreed otherwise by the DNO.
Module Load Points

<table>
<thead>
<tr>
<th>Module Load Point</th>
<th>Percentage MEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Load Point 6 (MEL)</td>
<td>100% MEL</td>
</tr>
<tr>
<td>Module Load Point 5</td>
<td>95% MEL</td>
</tr>
<tr>
<td>Module Load Point 4 (Mid-point of Operating Range)</td>
<td>80% MEL</td>
</tr>
<tr>
<td>Module Load Point 3</td>
<td>70% MEL</td>
</tr>
<tr>
<td>Module Load Point 2 (Minimum Stable Operating Level)</td>
<td>MG</td>
</tr>
<tr>
<td>Module Load Point 1 (Minimum Stable Operating Level)</td>
<td>MRL</td>
</tr>
</tbody>
</table>

C.8.6.4 The tests are divided into the following two types:

1. Frequency response tests in **Limited Frequency Sensitive Mode (LFSM)** to demonstrate **LFSM-O** capability and **LFSM-U** capability as shown by Figure C.8.1.

2. System islanding and step response tests if required by the **DNO**.

C.8.6.5

There should be sufficient time allowed between tests for control systems to reach steady state. Where the diagram states ‘HOLD’ the injection signal should be maintained until the **Active Power (MW)** output of the **Synchronous Power Generating Module** or **CCGT Module** has stabilised. The **DNO** may require repeat tests should the tests give unexpected results.
Figure C.8.1: Frequency Response Capability LFSM-O, LFSM-U, FSM Step Tests

* This will generally be +2.0 Hz unless an injection of this size causes a reduction in plant output that takes the operating point below Minimum Stable Operating Level in which case an appropriate injection should be calculated in accordance with the following:

For example 0.9 Hz is needed to take an initial output 65% to a final output of 20%. If the initial output was not 65% and the Minimum Stable Operating Level is not 20% then the injected step should be adjusted accordingly as shown in the example given below:

<table>
<thead>
<tr>
<th>Load Point</th>
<th>+2.0*</th>
<th>±0.02</th>
<th>-0.2</th>
<th>-0.2</th>
<th>-0.5</th>
<th>+0.5</th>
<th>+/-0.6-1.0</th>
<th>-2.0</th>
<th>±0 **</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP6</td>
<td>BC1</td>
<td>BC1</td>
<td>BC1</td>
<td>BC1</td>
<td>BC1</td>
<td>BC1</td>
<td>BC1</td>
<td>BC1</td>
<td>BC1</td>
</tr>
<tr>
<td>MLPS LF SM</td>
<td>BC2</td>
<td>BC2</td>
<td>BC2</td>
<td>BC2</td>
<td>BC2</td>
<td>BC2</td>
<td>BC2</td>
<td>BC2</td>
<td>BC2</td>
</tr>
<tr>
<td>MLPS</td>
<td>BC3</td>
<td>BC3</td>
<td>BC3</td>
<td>BC3</td>
<td>BC3</td>
<td>BC3</td>
<td>BC3</td>
<td>BC3</td>
<td>BC3</td>
</tr>
<tr>
<td>MLPS6</td>
<td>BC4</td>
<td>BC4</td>
<td>BC4</td>
<td>BC4</td>
<td>BC4</td>
<td>BC4</td>
<td>BC4</td>
<td>BC4</td>
<td>BC4</td>
</tr>
<tr>
<td>MLF5</td>
<td>BC5</td>
<td>BC5</td>
<td>BC5</td>
<td>BC5</td>
<td>BC5</td>
<td>BC5</td>
<td>BC5</td>
<td>BC5</td>
<td>BC5</td>
</tr>
<tr>
<td>MLF4 LF SM</td>
<td>BC7</td>
<td>BC7</td>
<td>BC7</td>
<td>BC7</td>
<td>BC7</td>
<td>BC7</td>
<td>BC7</td>
<td>BC7</td>
<td>BC7</td>
</tr>
<tr>
<td>MLF3</td>
<td>BC8</td>
<td>BC8</td>
<td>BC8</td>
<td>BC8</td>
<td>BC8</td>
<td>BC8</td>
<td>BC8</td>
<td>BC8</td>
<td>BC8</td>
</tr>
<tr>
<td>MLF1</td>
<td>BC10</td>
<td>BC10</td>
<td>BC10</td>
<td>BC10</td>
<td>BC10</td>
<td>BC10</td>
<td>BC10</td>
<td>BC10</td>
<td>BC10</td>
</tr>
</tbody>
</table>

Initial Output 65%

Minimum Stable Operating Level 20%

Frequency Controller Droop 4%

Frequency to be injected = (0.65-0.20) x 0.04 x 50 = 0.9 Hz

** Tests L and M in Figure C.8.1 shall be conducted if in this range of tests the system frequency feedback signal is replaced by the injection signal rather than the injection signal being added to the system frequency signal. The tests will consist of monitoring the Synchronous Power Generating Module and CCGT Module in Frequency Sensitive Mode during normal system frequency variations without applying any injection. Test N in Figure C.8.1 shall be conducted in all cases. Both tests should be conducted for a period of at least 10 minutes.
C.8.6.6 The target frequency adjustment facility should be demonstrated from the normal control point within the range of 49.9 Hz to 50.1 Hz by step changes to the target frequency setpoint.

C.8.7 Compliance with Output Power with falling frequency Functionality Test

C.8.7.1 The Generator will propose and agree a test procedure with the DNO, which will demonstrate how the Synchronous Power Generating Module Active Power output responds to changes in system frequency.

C.8.7.2 The tests can be undertaken by the Synchronous Power Generating Module powering a suitable load bank, or alternatively using the test set up of Figure A.7.6. In both cases a suitable test could be to start the test at nominal frequency with the Synchronous Power Generating Module operating at 100% of its Registered Capacity.

C.8.7.3 The frequency should then be set to 49.5 Hz for 5 minutes. The output should remain at 100% of Registered Capacity.

C.8.7.4 The frequency should then be set to 49.0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output shall not be below 99% of Registered Capacity.

C.8.7.5 The frequency should then be set to 48.0 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output shall not be below 97% of Registered Capacity.

C.8.7.6 The frequency should then be set to 47.6 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output shall not be below 96.2% of Registered Capacity.

C.8.7.7 The frequency should then be set to 47.1 Hz and held at this frequency for 20 s. The Active Power output shall not be below 95.0% of Registered Capacity and the Synchronous Power Generating Module shall not trip in less than the 20s of the test.

C.8.7.8 The Generator shall inform the DNO if any load limiter control is additionally employed.
Annex D

D.0 Power Generating Module Decommissioning Confirmation

Confirmation of the decommissioning of a Power Generating Module connected in parallel with the public Distribution Network – in accordance with EREC G99/NI

<table>
<thead>
<tr>
<th>Form D1 Decommissioning Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Details</td>
</tr>
<tr>
<td>Site Address (inc. post code)</td>
</tr>
<tr>
<td>Telephone number</td>
</tr>
<tr>
<td>MPRN(s)</td>
</tr>
<tr>
<td>Distribution Network Operator (DNO)</td>
</tr>
<tr>
<td>PGM Details</td>
</tr>
<tr>
<td>Manufacturer and model type</td>
</tr>
<tr>
<td>Serial number of each Generating Unit</td>
</tr>
<tr>
<td>Rating (kVA)</td>
</tr>
<tr>
<td>Type of prime mover and fuel source</td>
</tr>
<tr>
<td>Decommissioning Agent Details</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Accreditation/Qualification:</td>
</tr>
<tr>
<td>Address (incl post code)</td>
</tr>
<tr>
<td>Contact person</td>
</tr>
<tr>
<td>Telephone Number</td>
</tr>
<tr>
<td>E-mail address</td>
</tr>
<tr>
<td>Name:</td>
</tr>
<tr>
<td>Signature:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
</tbody>
</table>
D.1 Additional Information Relating to System Stability Studies

D1.1 System Stability

Stability is an important issue for secure and reliable power system operation. Consequently System Stability considerations deserve attention when developing Power Generating Module connection design and operating criteria. Power System Stability is defined as the ability of a power system to remain in a state of operating equilibrium under normal operating conditions and to regain an acceptable state of equilibrium after it has been subjected to a disturbance. When subjected to a disturbance, the stability of the system depends on the initial system operating condition as well as the severity of the disturbance (e.g., small or large). Small disturbances in the form of load changes or operational network switching occur continually; the stable system shall be able to adjust to the changing conditions and operate satisfactorily. The system shall also be able to survive more severe disturbances, such as a short circuit or loss of a large Power Generating Module. If following a disturbance the system is unstable, it will usually experience a progressive increase in angular separation of synchronous Generating Units’ rotors from the system, or an uncontrolled increase in the speed of asynchronous Generating Units’ rotors, or a progressive decrease in system voltages. An unstable system condition could also lead to cascading outages and ultimately to a system blackout.

The loss of System Stability is often related to inability of synchronous Generating Units to remain in Synchronism after being subjected to a disturbance, either small or large. Loss of Synchronism can occur between one synchronous Power Generating Modules and the rest of the system, or between groups of synchronous Power Generating Modules, with Synchronism being maintained within each group after separating from each other. Small disturbances arise frequently as a result of normal load variations and switching operations. Such disturbances cause electro-mechanical rotor oscillations, which are generally damped out by the inertia of the Generating Units, system impedance and loads connected to the Distribution Network. Where damping is inadequate, Power System Stabilisers (PSSs) may offer a solution.

Undamped oscillations which result in sustained voltage and power swings, and even loss of Synchronism between Synchronous Power Generating Modules, can arise following a small disturbance if either:

- the transfer capability of the interconnecting Distribution Network is insufficient; or
- the control and load characteristics either singly or in combination are such that inadequate or negative damping, or reduced synchronising torque occurs.

Large disturbances, such as a 3-phase short circuit fault or circuit outage, can result in large excursions of Synchronous Power Generating Modules’ rotor angles (i.e., angular separation) due to insufficient synchronising torque. The associated stability problem is then concerned with the ability of the system to maintain Synchronism when subjected to such a disturbance. Normally the most arduous case occurs when the summer minimum demand coincides with the maximum power output of the Synchronous Power Generating Module.
During a fault the electrical output of each synchronous Generating Unit may be substantially less than the mechanical input power from its prime mover and the excess energy will cause the rotor to accelerate and increase the electrical angle relative to the power system. Provided that the fault is disconnected quickly, the Synchronous Power Generating Module controls respond rapidly and with adequate Distribution Network connections remaining post-fault, the acceleration will be contained and stability maintained. Pole slipping could occur and if the acceleration is not contained, this will cause large cyclic exchanges of power between the Synchronous Power Generating Module and the Distribution Network. These may damage Synchronous Power Generating Modules, cause maloperation of Distribution Network protection and produce unacceptable voltage depressions in supply systems.

In the case of some types of Power Park Modules, the voltage depression on the local Distribution Network will cause acceleration of the rotor (increasing slip), with subsequent increased reactive demand. For prolonged faults this may cause the Power Park Module to go past its breakaway torque point and result in loss of stable operation and subsequent Power Generating Module disconnection.

In the case of doubly fed asynchronous Power Generating Modules and series converter connected Power Generating Modules, a voltage depression on the local Distribution Network may cause the AC-DC-AC converter to rapidly disconnect, with subsequent fast disconnection of the machine leading to a potential loss of System Stability.

In the case of Type C and Type D Power Generating Modules the capability to ride through certain Transmission System faults is critical to Distribution Network and Total System stability.

Where larger Synchronous Power Generating Modules are installed consideration should be given by the Generator and the DNO (in conjunction with TSO where necessary) for the need to provide pole-slipping protection. The ‘reach’ (ie impedance locus) of any settings applied to such a protection should be agreed between the Generator and the DNO. The settings should be optimised, with the aim of rapidly disconnecting generation in the event of pole-slipping, whilst maintaining stability of the protection against other disturbances such as load changes.

Stability investigations for new Power Generating Modules will initially need to use data that has been estimated from Manufacturer’s designs. On occasions, the machine size and/or equipment dynamic parameters change, and the studies may need to be repeated later during the project.

D.1.2 Clearance times

A Distribution Network can be subjected to a wide range of faults of which the location and fault type cannot be predicted. The System Stability should therefore be assessed for the fault type and location producing the most onerous conditions. It is recommended that three phase faults be considered.

The operating times of the equipment that have to detect and remove a fault from the system are critical to System Stability. Worst case situations for credible fault conditions will need to be studied, the fault locations selected for examination being dependent upon protection fault clearance times. Stability will normally be assessed on the basis of the slowest combination of the operating times of main protection signalling equipment and circuit breakers. Fault clearance times
therefore need to include the operating times of protection relays, signalling, trip relays and circuit breakers.

Faster clearance times may become necessary where studies indicate that the risk to System Stability is unacceptable. Single phase to earth fault clearance times can be protracted but their effects on the System Stability are likely to be less disruptive than a three-phase fault. Each case to be studied should be considered on an individual basis in order to determine acceptable fault clearance times.

D.1.3 Power System Stabilisers

In general, Power System Stabilisers should provide positive system damping of oscillations in the frequency range from 0 to 5 Hz. The gain of the Power System Stabiliser shall be such that an increase in the gain by a factor of at least 2 shall not cause instability. Type C and Type D Power Generating Modules will need to be studied in the context of the Total System, in conjunction with TSO.

Voltage fluctuations resulting from inadequate damping of control systems require study at the Point of Common Coupling (PCC) and shall be compliant with ER P28.
D.2 Loss of Mains (LoM) Protection Analysis

The following analysis for LoM protection includes the results of practical measurements. The attached analysis of the problem demonstrates the speed with which a Generating Unit can move out of Synchronism and the consequences for the unit of a reclosure on the Distribution Network.

D.2.1 Prime Mover Characteristics

A modern Generating Unit can be of four types:-

1. **Synchronous Generating Unit**: Where the stator frequency is defined by the rotational speed of the applied DC magnetic field in the rotor winding. The two being magnetically locked together, with the rotor magnetic field being at a slight advance (10-20 electrical degrees) of the stator in order to generate. When connected to a large electrical network both will track the applied frequency. The electrical inertia constant H of the Generating Unit will be in the order of 3 to 5 s (time to decrease the frequency by 50% for a 100% increase in load).

2. **Asynchronous Generating Unit**: Where the stator frequency is determined by the large electrical network it is connected to. The rotating stator field then induces a rotating magnetic field in the rotor winding. To generate, this winding will be rotating at a marginally faster speed to this induced rotating frequency (-1 to -2% slip) in order to generate. The electrical inertia constant H of the Generating Unit will be in the order of 4 to 5 s.

3. **Doubly Fed Induction Generating Unit** (DFIG): Similar to the asynchronous Generating Unit and usually found in wind turbines. Here the rotor is directly energised by a back to back voltage source converter (VSC). This creates in the rotor a variable frequency, in magnitude and phase, which allows the rotor to operate over a wider speed range than the 1-2% of an asynchronous Generating Unit. Typically +/-20% speed range is possible. The electrical inertia of the Generating Unit is less clearly defined as the rotor is effectively decoupled from the stator, but typically it is given as 4 to 5 s before the secondary control systems can react in a similar time period.

4. **Inverter Connected Generating Unit**: Whilst the DFIG is partly coupled to the network through the stator, here the power source is completely hidden behind the converter and the Generating Unit is fully decoupled from the network. The electrical inertia of the Generating Unit is theoretically zero unless a degree of ‘virtual inertia’ is introduced into the converter control scheme, to make the Generating Unit behave as if it were closely coupled to the network.

LoM protection systems follow two interrelated principles:

- Rate of Change of Frequency or RoCoF (of voltage)
- Vector Shift or Vector Surge (of voltage)

Both situations can arise from an imbalance between the power applied to the prime mover (and hence Generating Unit) and the power thus sent out into the network to supply load. There is a presumption, with both types of relays, that an
unbalance in load always exists when a Generating Unit is disconnected (Islanded) from the large electrical network. And this is then of sufficient magnitude to cause the Generating Unit to accelerate or de-accelerate (depending on its electrical inertia constant H) so changing the frequency of the generated voltage at a sufficient rate to be detected. This is assumed to be in the order of 10%.

Even if the Generating Unit remains connected, sudden changes to the impedance of the Distribution Network, caused by switching, or a sudden load change, can have a similar but smaller effect until a new stable operating point is achieved. This is quite common, especially on weak (low fault level) overhead networks. This is not a LoM event, but is known to cause mal-operation of LoM relays unless properly accounted for.

The initial change in frequency following the change in load is essentially a function of the inertia constant H of the combination of the Generating Unit and its prime mover. The derivation of the transient frequency response is given in D.3.2 below.

Note that these equations only truly apply to Generating Unit types 1 and 2 and to the initial (1 to 2 s) response for type 3. For type 4 Generating Unit discussions with the Manufacturer may be required to determine if any form of LoM relay would provide effective protection.

D.2.2 Analysis of Dynamic Behaviour of Generating Unit Following Load Change

The kinetic energy of a rotating Generating Unit and its prime mover is given by the equation:

\[K = 5.48 \times 10^{-6} \times J \times N^2 \]

where

- \(K \) = kinetic energy in kJ
- \(J \) = moment of inertia in kgm\(^2\)
- \(N \) = machine in speed in rpm

From equation 1, the inertia constant (H) of the machine can be calculated using the expression:

\[H = \frac{K^1}{G} \]

Where \(K^1 \) = Kinetic energy at rated speed and frequency (\(F_r \))

\(G \) = kVA capacity of the Generating Unit

Hence at any frequency, \(F \), the kinetic energy, \(K \), can be expressed as:

\[K = \left(\frac{F}{F_r} \right)^2 \times H \times G \]

Now the immediate effect of any change in the power, \(P_C \), being supplied by the Generating Unit is to initiate a change in the kinetic energy of the machine. In fact \(P_C \) is the differential of the kinetic energy with respect to time, thus:
\[P_c = \frac{dK}{dt} \quad \text{equation 4} \]

Rewriting:

\[P_c = \frac{dK}{dF} \times \frac{dF}{dt} \quad \text{equation 5} \]

Differentiating equation 3 gives:

\[\frac{dK}{dF} = \frac{2FHG}{F_r^2} \quad \text{equation 6} \]

Substituting in equation 5:

\[P_c = \frac{2FHG}{F_r^2} \times \frac{dF}{dt} \]

Re-arranging:

\[\frac{dF}{dt} = \frac{P_c F_r^2}{2HGF} \quad \text{equation 7} \]
D.3 Main Statutory and Other Obligations

This Annex summarises the main statutory and other obligations on the DNO, Generators and Customers in relation to the design and operation of primary and protection equipment associated with Distribution Networks.

The key driver on the DNO is to ensure that it can comply with its statutory duties, and its regulatory obligations, in protecting its network, and disconnecting the minimum amount of equipment when unsafe situations have developed, as well as preserving supplies to other Customers.

A key consideration of Generators and Customers is similarly to ensure that they can comply with their statutory duties to protect their entire network and to disconnect relevant equipment when unsafe situations have developed.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Obligation</th>
<th>DNO</th>
<th>Generator</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESQCR (NI)</td>
<td>Ensure equipment is sufficient for purpose and electrically protected to prevent danger, so far as is reasonably practicable.</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Reg 3</td>
<td>Disclose information and co-operate with each other to ensure compliance with the ESQC Regulations 2002</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>ESQCR (NI)</td>
<td>Apply protective devices to their network, so far as is reasonably practicable, to prevent overcurrents from exceeding equipment ratings.</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Reg 6</td>
<td>Ensure continuity of the neutral conductor and not introduce any protective device in the neutral conductor or earthing connection of LV networks.</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>ESQCR (NI)</td>
<td>Connect the network to earth at or as near as reasonably practicable to the source of voltage; the earth connection need only be made at one point.</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Reg 8</td>
<td>Take all reasonable precautions to minimise the risk of fire from substation equipment.</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>ESQCR (NI)</td>
<td>Ensure that switched alternative sources of energy to Distribution Networks cannot operate in parallel with those networks and that such equipment which is part of an LV consumer’s installation complies with BS 7671.</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Reference</td>
<td>Obligation</td>
<td>DNO</td>
<td>Generator</td>
<td>Customer</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-----</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>ESQCR (NI) Reg 23</td>
<td>Not install or operate sources of energy in parallel with Distribution Networks unless there are: appropriate equipment, personnel and procedures to prevent danger, so far as is reasonably practicable; LV consumers' equipment complies with BS 7671; and specific requirements are agreed with the DNO.</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ESQCR (NI) Reg 25</td>
<td>DNO equipment which is on a consumer's premises but not under the consumer's control is protected by a suitable fused cut-out or circuit breaker which is situated as close as reasonably practicable to the supply terminals, which is enclosed in a locked or sealed container.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ESQCR (NI) Reg 26</td>
<td>Not give consent to making or altering of connections where there are reasonable grounds to believe that the consumer's installation does not comply with ESQCR / BS 7671 or, so far as is reasonably practicable, is not protected to prevent danger or interruption of supply.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESQCR (NI) Reg 28</td>
<td>Declare the number of phases, frequency and voltage of the supply and, save in exceptional circumstances, keep this within permitted variations.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ESQCR (NI) Reg 29</td>
<td>Provide a written statement of the type and rating of protective devices.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAWR (NI) Reg 4</td>
<td>Construct systems including suitable protective devices that can handle the likely load and fault conditions.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EAWR (NI) Reg 5</td>
<td>Not put into service electrical equipment where it strength and capability may be exceeded in such a way as to pose a danger.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EAWR (NI) Reg 11</td>
<td>Provide an efficient and suitably located means to protect against excess current that would otherwise result in danger.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MHSWR 43 (NI) Reg 3</td>
<td>Carry out an assessment of risks to which employees are exposed to at work and risks to other persons not employed arising from the activities undertaken.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

43 The Management of Health and Safety at Work Regulations (Northern Ireland) 2000
<table>
<thead>
<tr>
<th>Reference</th>
<th>Obligation</th>
<th>DNO</th>
<th>Generator</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 7671</td>
<td>Provide protective devices to break overload/fault current in LV consumer installations before danger arises.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BS 7671</td>
<td>Take suitable precautions where a reduction in voltage, or loss and subsequent restoration of voltage, could cause danger.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Distribution Code CC 6.9</td>
<td>Incorporate protective devices in Distribution Networks in accordance with the requirements of the Electricity Supply Regulations (N.I.) 1991. Customer’s equipment shall be compatible with DNO standards and practices. Design protection systems that take into account auto-reclosing or sequential switching features on the DNO network. Be aware that DNO protection arrangements may cause disconnection of one or two phases only of a three phase supply.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Distribution Code CC 6.10</td>
<td>Agree protection systems, operating times, discrimination and sensitivity at the ownership boundary. Normally provide back-up protection in case of circuit breaker failure on HV systems.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

D.4 Guidance on Risk Assessment when using RoCoF LOM Protection

This procedure aims to provide guidance on assessing the risks to a Generator's plant and equipment where a Power Generating Facility is considering the effect of applying higher interface Protection settings. Information provided by the DNO in relation to this annex may be at the expense of the Generator.

The guidance in this annex relates to a new activity. Early experience may suggest there are more efficient or effective ways of assessing the risk. The DNO and Generators will be free to adapt this procedure to achieve the Generators’ ends.

When a Generator wishes to carry out a risk assessment the DNO will be able to provide an estimate of the net (ie taking into account as appropriate other generation on that part of the network) potential trapped load. This can be in the form of a yearly profile, and possibly in the form of a load duration curve. It is possible that an island may form at more than one automatic switching point on the DNO’s network and the DNO will be able to provide a profile or estimate of a profile for each. This will enable a quick assessment to be made as to the whether the mismatch between load and generation is so gross as to obviate further study. It is for the Generator to determine what a gross mismatch is depending on the Generating Unit’s response to a change in Active Power or Reactive Power. The Generator should be aware that the trapped load on a network can change over time, due to the connection or disconnection of load and or generation and network topology changes; hence the trapped load assessment may need to be carried out periodically.

The DNO will also be able to provide indicative fault rates for their network that lead to the tripping of the automatic switching points.

The DNO will also be able to provide the automatic switching times employed by any auto-reclose switchgear employed at switching points.

The DNO will provide the information above and any other relevant information reasonably required within a reasonable time when requested by the Generator.

A key influence on the stability of any power island will be the short term, ie second by second, variation of the trapped load. The DNO will be able to provide either a generic variability of the load with typically 1 s resolution data points, or at the Generator’s expense will be able to measure actual load variability for the network in question for some representative operating conditions.

Armed with the above information the Generator will be able to commission appropriate modelling to simulate the stability of the Generator’s plant when subject to an islanding condition and hence assess the risks associated with an out-of-phase reclosure incident. Where the Generator considers these risks to be too high, sensitivity analysis should enable them to identify the effectiveness of various remedial actions.